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ABSTRACT 
We conducted a rhythmic pattern learning and synchronization 
experiment. During the experiment, each of 20 experiment subjects 
was learning 7 patterns in different level of difficulty from a 
drummer robot. They played all the patterns twice in 2 different 
visual conditions: being able to see, and not being able to see the 
robot’s movement. 10 of the subjects could see the robot the first 
time they played the 7 patterns, and they then played the patterns the 
second time without seeing the robot. The other 10 played in the 
opposite order of visual conditions. We applied Dynamic Time 
Warping algorithm on the onset time values to find the best matches 
between the subjects' and robot's hits. Then we used 4-way Analysis 
of Variance with the factors: existence of visual cues, order of visual 
conditions, subjects, and onset times, to analyze their influence on 
the time difference between matching onsets. The average of onset 
time differences was treated as a measure of synchronization. The 
data showed that, in case of more difficult patterns, the average onset 
time difference had higher variance when there were no visual cues 
compared to when there were visual cues, while in case of easier 
patterns, the variance was not significant. Thus we infer that visual 
cues can influence synchronization in a task that requires learning of 
more difficult rhythmic patterns. We also inferred that subjects 
showed a tendency to learn new patterns faster with visual cues. We 
further observed that people tend to play in a lag with visual cues 
during the learning period, and play better after learning. However, 
more experimentation is needed to establish statistical significance of 
the last two effects. 

INTRODUCTION 
Synchronization is a fundamental task in ensemble music.  

Specifically, rhythmic synchronization has long been 
considered one of the most important elements in music. It is 
obvious that auditory cues and events, such as a mistake in 
one's playing, or a change in tempo, affect the level of 
synchronization between two or more musicians. Here we 
explore the role of visual cues in aiding a player's 
performance in terms of the level of synchronization.   

Some related research has been done in such musical 
contexts. Luck and Sloboda (2008) studied the 
synchronization between a participant's tapping and the beats 
depicted by a point-light representation of a conductor. They 
examined the effect of various conducting movement rates 
and showed that the highest correlation between taps and the 
conductor occurred when there was an absolute acceleration 
of the trajectory of the conductor’s hand.  Hoffman and 
Weinberg (2010) used a robotic musician to study the effects 
of visual cues on synchronization. They demonstrated that 
when human musicians are able to see the robot, 
synchronization improves only when the robot musician is 
playing in an unpredictable tempo. Other works of research 
studying the effect of visual and auditory cues on 
synchronization that inspired us are by Repp (2006) and by 
Repp and Penel (2004). 

Brian Blosser (2010) studied synchronization in an 
ensemble performance setting using different visual 
modalities.  In his series of experiments, six drummers were 
divided into two groups according to their skill level: one 
consisting of experienced drummers, and the other consisting 
of novice drummers. In each group, each person would play 
as a leader once while the other drummers attempted to 
synchronize with this leader under two conditions: 
looking-out and looking-in. Under the former condition the 
drummers could not see each other, and under the latter the 
drummers could see each other. The experimental results 
showed that for experienced drummers visual cues helped 
synchronization, but for novices visual cues decreased 
synchronization, which contradicted Blosser's hypothesis. 

Some improvements can be made to Blosser's experiments 
to address concerns for impreciseness and distraction.  Firstly, 
the sample size of 6 people was too small. Any extreme 
outlier would lead to a large data offset. Secondly, the 
difficulty levels of the rhythmic motifs played were not fully 
controlled, because they were generated intuitively by the 
leader. Thirdly, three drummers playing simultaneously in one 
group might lead to interference; mistake by one follower 
might influence the other follower. Finally, the order of visual 
conditions was not controlled; the order was predominantly 
looking-out after looking-in, which might influence the 
accuracy as people might get more familiar with the piece 
after playing it once. 

 

EXPERIMENT 
A. Motivation and Hypothesis 

The effectiveness of different visual modalities is an 
important issue in music ensembles and may lead to a better 
understanding of how musicians naturally synchronize. To 
measure the effects of visual modalities with fewer distractive 
factors a new experiment is necessary. Here we design a new 
experiment to more accurately measure these effects, which 
focuses on the synchronization of rhythmic motifs between a 
single musician and Haile, the robotic drummer. 

We make two hypotheses: subjects should synchronize 
better with visual cues, and subjects may learn the patterns 
faster with visual cues. The latter is to say, the temporal 
duration to reach a certain level of synchronization will be 
shorter with the aid of visual cues. 

 

B. Stimuli 
The stimuli consist of 7 drum patterns described by Povel 

and Essen (1985). Each pattern is in 16 beats (240ms per beat 
in this experiment) and repeats itself for 1 minute. The 
duration and onset sequences of the patterns are shown in 
Table 1. All patterns contain the same total number of hits and 
the same number of hits of each duration, but at different 
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temporal positions in a bar. We assume that all patterns are 
new to all the subjects. The difficulty level increases with 
each pattern as described by Povel and Essen (1985). 

Table 1. Rhythmic patterns used in experiment 

Pattern Duration Sequence Onset Sequence 

1 1 1 1 1 3 1 2 2 4                  

2 1 1 2 1 1 2 1 3 4                  

3 1 1 2 1 3 1 2 1 4                  

4 1 2 1 1 1 2 1 3 4                  

5 1 1 1 1 2 1 2 3 4                  

6 1 1 1 2 2 3 1 1 4                  

7 1 1 1 2 1 1 3 2 4                  

 
To have more control in this experiment, we use GTCMT's 

robot Haile (/ˈheɪli/) (Figure 1) to generate the stimuli. 
Compared to a human, the drummer robot's playing is 
measurably more accurate. The only uncontrollable factor is 
the mechanical friction and delay; however the robot is still 
more precise than a human player. The up-and-down 
movement of Haile's left arm resembles that of a human's (in 
terms of rate) and is used in this experiment (Weinberg and 
Driscoll, 2007). 

 

 
 

Figure 1. Drummer robot Haile in GTCMT 
 

C. Subjects 
20 subjects with different levels of music background 

attended this experiment. We randomly divided the subjects 
into 2 groups, Group A and Group B. The two groups played 
the drum patterns in different visual cue orders. We 
purposefully did not consider the skill level in music or 
percussion when dividing the groups, because a measure of 
skill is somewhat subjective and different standards may have 
different criteria for measuring it. Therefore it can be assumed 
that the primary difference between the two groups is the 
visual cue order. 

 

D. Procedure 
For Group A, subjects were asked to follow the 7 patterns 

played by Haile twice. During the first round they could see 

Haile’s movement and during the second round Haile was 
occluded with a large white board so that the participants 
would play without making visual contact with the robot. 
Subjects in Group B followed the same procedure, but in 
reverse order. They played the 7 patterns without visual cues 
the first time and then with the visual cues the second time. 

 

E. Equipment 
To detect and measure Haile's strike onsets, a piezoelectric 

sensor element was placed on the surface of the drum to 
detect vibration. When the surface of the drum is struck the 
piezo element generated a voltage between its two electric 
poles due to the change in shape. An Arduino microcontroller 
system was used as an AC/DC converter, which read the 
piezo output voltage value and transformed it into digital form. 
We programmed the Arduino control software to print a time 
measurement in milliseconds when the voltage exceeded a 
certain threshold; this threshold could be adjusted to change 
the level of sensitivity in different experiment environments. 
Additionally, a microphone was used to record the acoustic 
sound of the drum as a reference wave file. 

For human subjects, we used an electronic drum pad as the 
input device to collect onset data as MIDI data, which was 
connected to ProTools software for recording. 

 

 
Figure 2.Recording System 

 

DATA ANALYSIS 
A. Noise Data Removal 

We used a threshold of 200ms as a minimum interval 
between two of Haile's onsets, following from the tempo used 
for the patterns corresponding to 240ms per beat. This 
reduced the possibility of interpreting a single strike with 
large vibrations as multiple onsets; if the time interval 
between two detections was less than 200ms, the second one 
was ignored and the next detected onset was compared with 
the first. We found 200ms to be a suitable threshold for 
eliminating noise and false onsets. This threshold is small 
enough to allow for onset shifts due to robot’s mechanical 
frictions; at the same time it’s big enough to eliminate most of 
the double triggered onsets.  

We used a similar minimum interval threshold method for 
removing noise and false onsets from the subjects' MIDI data. 
Noise data could be generated in one of two ways: the 
elasticity of the drum skin might cause a double hit or the 
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simultaneous strike of two sections of the segmented MIDI 
drum pad (this would cause two MIDI notes to be recorded at 
the same time). To account for these possible false onsets we 
set a threshold of a minimum 10ms interval. 

 

B. Onset Sequence Matching 
In order to measure the synchronization between the robot 

and human, it is necessary to find each of their corresponding 
onset pairs. To do this we regard the piezo onset sequence 
(played by the robot) as a reference and try to match the MIDI 
sequence (played by human) with it. The simplest method is 
to find the nearest one in time.  Though simple, this algorithm 
may cause multiple MIDI onsets to be matched with a single 
piezo onset or multiple piezo onsets to be matched to a single 
MIDI onset. This method also does not guarantee accurate 
matching between the two corresponding sequences of onsets. 

To solve the matching problem, we devised a better 
algorithm based on Dynamic Time Warping Algorithm. DTW 
is a well-known technique to find an optimal alignment 
between two given (time-dependent) sequences under certain 
matching restrictions (Müller, 2007). 

 

 
Figure 3.Dynamic Time Warping 

 
To determine an optimal path, defined by the points of 

matching between the two sequences X & Y pictured along 
the two axes of a matrix grid, one could test every possible 
warping path between X and Y, but it would result in very 
high computational time complexity that is exponential in the 
lengths N and M. To reduce the time complexity, recursive 
computation and dynamic programming can be applied. A 
new matrix named accumulated cost matrix is defined: 

! !,! = !"#(! 1: ! ,!(1:!)) 
with the cost: 

!(!!, !!) 

The resulting accumulated cost matrix D can then be 
computed by the recursion: 

! !,! = min ! ! − 1,! − 1 ,! ! − 2,! − 1 ,! !
− 1,! − 2   +   ! x!, y!  

for 1<n≤N and 1<m≤M 

Instead of finding all possible routes through the grid that 
satisfy the constraints, this algorithm works by keeping track 
of the cost of the best path to each point in the grid. During 
the computational process populating the accumulated cost 
matrix, any path can potentially be the lowest cost path. But 
the optimal path can be traced back once the entire matrix is 
populated. 

Several constraints are applied in the process. There cannot 
be multiple MIDI onsets being matched to single piezo onset 
or one MIDI onset being matched to multiple piezo onsets.  

Further, if a MIDI onset m has been matched to a piezo 
onset n, the MIDI onsets after m are not allowed to be 

matched to the piezo onsets before n; thus, a cross-match is 
avoided to maintain temporal order. 

We also set ! !!, !! = 500ms when there is no match, as 
a penalty. Based on our observation and analysis of the 
experiment data, a subject is not likely to try to make a MIDI 
onset that is more than 500ms away from the piezo onset that 
he/she intends to follow. The subjects either make the onset 
closer to the piezo onset or miss it altogether. Based on the 
observation, we set a window with length of 500ms ∗ 2 and 
only onsets inside the window could be selected as possible 
matches. This could increase the computation speed. 

This algorithm has some advantages comparing to simply 
finding the nearest onset. Figure 4 shows us a possible 
situation. The upper part shows piezo onsets from 40s to 45s, 
and the lower one shows the MIDI onsets during the same 
period. For the 3rd red onset R3, we can tell by observation 
that the subject intended to catch the 3rd piezo onset B3, but 
played a little late. R4 is supposed to be matched with B4. 
With the simple algorithm, R3 will be matched to both B3 and 
B4 since it is the closest one to both of them. If only one pair 
is to be selected, B4 would be matched to R3, thus making the 
wrong match and abandoning B3 and R4 onsets. However, 
with the DTW-based algorithm, matches are made correctly.  

 

 
Figure 4. One segment of piezo and MIDI onset sequences 

 
The results of matching were graphically verified and were 

found to be as intended. Figure 5 is the first 10 seconds’ 
matching results for the first subject, with visual cues, and for 
pattern 1. Both x and y axes are time. Green lines are subject’s 
onsets, and blue lines are piezo onsets. The red dots mark the 
matches determined. The black line is where y=x, which gives 
a reference for perfect synchronization. The figure also shows 
some noisy subject onsets, which would later be filtered off. 

 

 
 

Figure 5.Matching result of first 10 second for first subject 
 

964



C. Analysis on time difference between matched onset pair 
After getting all the matching pairs, statistical analysis was 

conducted on the time difference (subject's onset time - piezo 
onset time) between each matching pair. We used absolute 
time difference to analyse how well they are synchronized and 
used the original time difference to analyse the 
prediction/lead-lag effect during learning. We applied 3-way 
Analysis of Variance (ANOVA) (Hogg, 1987) on the two 
versions of time difference, with respect to the parameters: 
visual cue order (experiment group), visual cue on/off, and 
pattern. The ANOVA analysis was applied to not only the 
whole 1 minute of each pattern’s playtime, but also to the first 
10s, 10-20s, 20-30s and 30-60s, in order to be able to observe 
the performance differences in different learning periods. 

The analysis of data from the experiment showed the 
following effects of visual cues: 

(1) Overall synchronization accuracy: the analysis on 
absolute time difference shows that two out of seven patterns, 
(4 and 7), which we labeled as medium and high difficulties, 
showed significant difference in the synchronization metric 
between the visual on/off conditions (Figure 6), and the metric 
for these patterns was worse in the case of visual off condition. 
Differences were not significant with easier patterns. We infer 
that visual cues aid synchronization in case of more difficult 
patterns. 

 
Figure 6. Comparison of synchronization metric for the 7 

patterns under Visual On/Off conditions 
 
Analyzing the data of the relatively steady latter half of the 

sessions, from 30th to 60th second, we also observed the trend 
wherein the mean synchronization metric was slightly better 
for visual-on condition compared to that for visual-off. 

 

 
Figure 7. Comparison of synchronization metric for Visual 

On/Off conditions for the steady part of the sessions 

 
(2) Learning effect: analyzing the absolute time difference 

data of the relatively steady latter half of the sessions, from 
30th to 60th second, we also found that the subjects group that 
played the pattern with visual cues first before playing them 
without the cues had a slightly better synchronization metric 
than the other group that was exposed in the reverse order 
(Figure 8). While more experimentation is required to 
establish this with statistical significance, looking at the 
general trend, we infer that visual cues helped subjects in 
learning the patterns faster. 

 

 
 

Figure 8. Comparison of synchronization metric for the Visual 
On/Off conditions, for the two subjects groups differing in the 

order of visual condition 
 
(3) Lead and lag: the analysis on original time difference 

shows that subjects played in a bigger lag when playing with 
visual cue at first 10 seconds, and subjects played better after 
the first 10 seconds (Figure 9). The overall performance for 1 
minute, with presence of visual and without, didn’t show 
significant difference. This means people take some time on 
seeing the visual cues and then play the onset during the 
learning period, but it doesn't influence the overall accuracy. 
They play better with visual cues after learning period.  
 

 

 
Figure 9. Comparison of synchronization metric for the Visual 

On/Off conditions for first 10 seconds (left) and 10-20 seconds 
(right) 

 

CONCLUSION 
When learning a rhythmic pattern at a medium tempo, in 

our experimental setup, visual cues were found to be helpful 
in facilitating synchronized performance only in case of more 
difficult patterns, when subjects were first introduced to new 
patterns. Subjects also showed a tendency to learn new 
patterns faster with visual cues. They further tended to play in 
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lag with visual cues in the early learning period, but to play 
better later after learning with visual cues. The latter two 
effects however were not statistically significant.  
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