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ABSTRACT 
This study aims to model social dynamics of an idealized closed 
musical society to investigate whether a musical agreement in terms 
of shared musical expectations can be attained without external 
intervention or centralized control. Our model implements a 
multi-agent simulation, where identical agents, which have their own 
private two dimensional transition matrix that defines their 
expectations on all possible bi-gram note transitions, are involved in 
round-based pairwise interactions. Throughout an interaction two 
agents are randomly chosen from the population, one as the 
performer and the other as the listener. Performers compose a fixed 
length melodic line by successively appending their most expected 
note sequences recursively by using sounds from a finite inventory. 
Listeners assess this melody to determine the success of the 
interaction by evaluating how familiar they are to the bi-gram 
transitions that they hear. According to success the interacting parties 
perform updates on their transition matrices. All agents start with a 
flat transition matrix, and the simulation ends when they converge on 
a state of agreement. We have found that 30 out of 144 possible 
bi-grams, 74 out of 1728 possible tri-grams, and 7 out of 20736 
four-grams emerged as agreements, although only bi-grams are 
communicated. The findings signify that melodic building blocks for 
the modeled society are self-organizing, given the limited bi-gram 
expectations of individuals, and that convergence trends are 
dependent on simulation parameters. 

I. INTRODUCTION 
Evolutionary explanations are fruitful as they provide 

holistic views of societies and cultures instead of focusing on 
the behavioral regularities of individuals that arise upon the 
phenomena that is being investigated. They can be used to 
interpret emergence and evolution of well-structured symbolic 
systems which have substantial social functions, like music. 

Particularly, within the domain of music cognition previous 
generative and combinatory theories (like Schenkerian 
Analysis, Generative Theory of Tonal Music and 
Combinatory Categorial Grammars) were interested in 
explaining only well structured musical pieces of tonal culture 
(Forte & Gilbert, 1982; Lerdahl & Jackendoff, 1996; 
Steedman 1984). Some other social aspects of music 
cognition need to be studied conveniently. Research questions 
like “How do shared sound systems emerge?”, “How do 
hierarchical systems like modality, tonality and their alikes 
evolve with a musical culture?” or “Does population dynamics 
play a crucial role in evolution and emergence of musical 
conventions?” still remains unanswered. Considering these 
questions, it may be proposed that social dynamics of a 
musical culture may influence compositional routines of its 
own. 

By any means, compositional grouping is for sure not 
random in any musical culture. Musical systems can be 

broadly formalized over the processes undertaken by the 
composer to generate a musical piece, in correlation with 
listeners’ effort to resolve overall dependencies between the 
musical events within that piece to form a mental 
representation of what is heard. Accordingly, minimal 
agreement is required to bridge the compositional grammar 
adopted by the composer to generate and organize musical 
events and the listening grammar used by the listener to parse 
the composed piece (Lerdahl, 1988). From the listeners’ 
perspective, compositional rules are not directly accessible, if 
not explicitly presented. However, listeners can reconstruct 
organizational rules between the musical events if they have a 
familiarity with the structural organization of the heard piece. 
Taking this into account, for a musical piece to be 
successfully parsed by auditors, composers must construct a 
structural organization within the composition based on a 
shared musical grammar which embraces both compositional 
and listening grammars. 

Specifically, common and widely spread musical 
conventions among a culture form the natural grammar of 
music for that society. Natural grammars of music outline the 
boundaries for compositional and listening grammars that can 
be generated in a specific culture. Musical conventions can be 
exemplified with commonly used harmonic structures, 
melodic and rhythmic movements. These are not ossified, 
rather they are dynamically subject to change depending on 
time and culture in which they are in use. Besides, new 
musical styles emerge throughout time within a society and 
they impose an expansion in the set of musical conventions.  

Keeping all these in mind, it can be inferred that musical 
systems cannot be grasped by only modeling cognitive 
abilities of individuals of a specific culture. Music is highly 
dependent on social interactions and cultural know-how. 
Therefore, a broader understanding on how musical 
conventions emerge and evolve can only be investigated in a 
model that can fulfill all these preliminary assumptions about 
musical systems. 

In correlation, this paper will present a computational 
model of musical interactions and agents which are captured 
as a complex dynamical system. Computational CAS models 
are capable of capturing overall behavior of dynamical 
non-deterministic systems with respect to interactions of their 
individual constituent components, thus this lane of research 
is promising for studying music as a social tool and it can 
reveal intriguing facts about music cognition. 

Briefly, the scope is of this paper is narrowed down only to 
study how a social consensus on musical expectations may be 
attained in a model of closed musical community. 
Correspondingly, agent’s compositional preferences and their 
aesthetic assessments of the songs, which are exchanged 
among them, are only grounded to their musical expectations. 
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In accordance, it is aimed to explore how much of emergence 
of culturally dependent musical structures (such as commonly 
used melodic lines) can be explained with these minimal 
assumptions. In the following section, relevant models of the 
literature will be briefly overviewed in correlation with the 
essential methodology of CAS. Our model and results will be 
then be presented and discussed.  

II. BACKGROUND 
Dynamic multi-agent systems can be classified as CAS if 

large number of local interactions creates an adaptive 
behavior. Collective adaptive behavior gives cause for system 
complexity. Interactions between the micro-level constituents, 
which are generally called the agents, engender a structural 
reorganization on the system for it to reach a state that may 
promote a specific macro-level functional behavior. 
Self-organization in CAS is a never-ending process. Hence, 
widely spread self-adjusting interactions make the system 
behavior non-linear so that the system exposes a state far from 
optimality in a given time (Holland, 1992). Within the 
literature artificial distributed multi-agent simulations of CAS 
are being used for testing the plausibility of hypotheses 
related with emergence and evolution of linguistic and 
musical conventions, since they can capture social dynamics 
on macro-level. 

Computational models of evolutionary linguistics try to 
model language as a social tool with adaptive complex 
dynamical systems. The field of research is often called 
semiotic dynamics as it investigates how a population of 
agents generate a structural organization on the way to create 
commonly shared social contexts or semiotic systems that 
involves social conventions which are essential for 
cooperative action (Steels & Kaplan, 1999). In 
correspondence, computational evolutionary musicology 
literature, which emanate from semiotic dynamics as the 
historical successor, focus on computational modeling of 
emergence and evolution of musical conventions (Miranda & 
Todd, 2007). Both lines of research investigate emergent 
behaviors of societies where complex local interactions 
between individuals effect global organization.  

In this context, models of computational evolutionary 
musicology are non-situated, meaning that musical 
interactions between the agents do not relate them on an 
explicit representation of their environment. That is to say, 
musical structures do not indicate some state of affairs. 
Therefore, musical signal lacks indexicality. Besides, music 
can be represented as a sequential organization of musical 
events in time. To represent sequentiality, signals are 
composed as collections of successive musical events (in most 
cases notes or sounds). 

In a simplistic way, models that are going to be presented 
in this section implement iterative rounds of pairwise (or 
groupwise) musical interactions. An instance of interaction 
encloses certain assumptions to regulate how agents engage in 
a mutual activity. They are designed to explore whether they 
would have specific bearings on the population behavior. 

Particularly, agents are computational abstractions which 
are usually implemented as robots or computer programs. 
Agents communicate over signals. They are psychological 
competent, meaning that they are capable of producing signals 
to externally transmit to the peers so as to perform and they 

are capable to listen an external signal input. Therefore, they 
have sensori-motor apparatus which can be used as detectors 
and effectors. Moreover, they must be knowledgeable of what 
a signal designates and how to compose a signal from 
lower-level components. They should know how to interact 
with each other and how to assess a perceived signal that is 
externalized by a peer, so that they have a list of classifiers 
that specifies their possible actions in a given state. Usually, 
agents have a memory which represents their knowledge. 
Though they are not aware of their peers mental states or 
memory.  

Respectively, an agent takes following actions while 
interacting with a peer: 

1. Collect signals either from its environment or from 
another agent through the detectors/sensory 
apparatus.  

2. Input signals are assessed with the classifiers.  
3. Memory is updated depending on the rules of the 

interaction.  
4. If it is entailed an action or an output signal is 

produced with the effectors/motor apparatus.  
At this stage, it could be argued that foregoing 

formalization of musical interactions cannot capture some 
other substantial aspects of music cognition. For instance, 
non-disputably musical interactions culminate with an 
emotional response on the listener on individual basis. 
However, models of computational evolutionary musicology 
exclude such aspects with an abstraction. Taking all these into 
consideration, rest of this section will briefly review three of 
the models that were influential in designing ours. 

A. Emergence of Shared Repertoire of Sounds 
Composers and listeners must share some common 

knowledge on musical conventions to complete a successful 
musical interaction. Miranda (2002) proposes that the primary 
requirement for a society to bootstrap a shared musical 
lexicon is to attain a state where its individuals’ knowledge on 
musical conventions must be sufficiently similar. It has been 
argued that the primary aim of a musical agent must be to 
reorganize its musical knowledge by interacting with other 
members of the community to have a common background. 
Accordingly, this effort can be named as sociability or social 
bonding. In other words, an agent becomes accepted in a 
society if it can produce pieces that can be parsed by others 
and if that agent can parse the pieces composed in accordance 
with the conventions of that society (Miranda, 2002; Miranda 
& Drouet, 2005; Miranda, 2008). 

A simulation is designed by Miranda (2002) to capture the 
effects of above mentioned sociability hypothesis on 
organization of the social structure of a musical society. 
Basically, the aim of each agent is to successfully mimic the 
heard signal which is created by a composer counterpart. 
Simulation models a population of agents that are capable of 
playing the role of both performer and imitator. In each round 
a musical interaction occurs between two randomly chosen 
agents where one is the performer and the other is the 
imitator.  

Agents of this simulation are robot implementations and 
the musical signals (sounds) shared between them are real 
world acoustic signals. To process a sound, agents use a 
two-fold representation scheme. Each one of them is equipped 
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with two separate lexicons to store motor and perceptual 
representations of a sound. Moreover, they are capable of 
remembering how many times they were successful in 
imitating a specific sound. 

To hear a sound agents use a hearing apparatus which 
converts the acoustic signal to its perceptual representation. 
Perceptual representation is the rough estimations of the pitch, 
loudness and duration of a sound which can be calculated by 
the hearing apparatus from the heard acoustic signal. If an 
agent wants to play a specific sound it first chooses the 
perceptual representation from its own lexicon and then uses 
the corresponding motor representation to articulate. Motor 
representation consists of the parameters fundamental 
frequency, amplitude and duration. Vocal synthesizer of an 
agent uses these values to synthesize the sound that is 
intended to be generated. 

Overall, as it is sketched out by Miranda (2002) in an 
interaction a random performer and imitator is chosen among 
the population. Performer plays a sound from its lexicon by 
choosing a perceptual representation from the lexicon and 
articulating its corresponding motor representation. If its 
lexicon is empty, then a random sound is generated. Imitator 
extracts a perceptual representation from the heard sound. 
After the extraction, imitator searches for a similar perceptual 
representation in its lexicon. When a match is found 
corresponding motor representation for the most similar sound 
is articulated. A randomly generated sound is played back as 
the imitation when its lexicon is empty. Performer listens and 
assesses whether the imitation is sufficiently similar to the 
sound it played. If it is similar enough imitator is informed 
that its imitation was successful. Otherwise, imitation is 
ranked as unsuccessful and the imitator is informed 
accordingly. Both performer and imitator update their lexicon 
regarding the success of the imitation. If the original 
performance and its imitation are similar, both agents 
reinforce and increase the amount of successes gained by 
using that sound. Sounds, which are not used in a successful 
imitation for a specific amount of time, are forgotten.  

To refine the assessment procedure, it can be stated that 
different agents can have different motor representations for a 
particular sound. However, two sounds are classified as the 
same if their perceptual representations overlap. Therefore, an 
imitation is successful if interacting agents can come up with 
a perceptual match rather than agreement of the sensory 
representations. 

Whenever an agent imitates a sound from its lexicon it 
slightly alters its motor representation on performance. To this 
end, alteration of the motor representation on real-time 
articulation confronts the spread of new intonations to the 
society. With the help of reformative updates on the lexicon 
after successful imitations population dynamically reaches to 
a state of agreement of lexicons. Eventually within this 
agreement state imitations are observed to be successful 
which assures social bonding between the individuals. 

B. Evolution of Musical Behavior 
Werner and Todd (1997) argue that evolution of music is a 

consequence of selective pressure in that community. They 
propose that effects of different compositional routines on a 
society can be reformulated and analyzed as a co-evolutionary 
mating problem through musical interactions. That is to say, a 

population of agents from two opposing sex, namely males 
and females, are modeled. Males undertook the role of being 
musical performers, whereas females were listeners. Agents 
are knowledgeable about a closed lexicon of notes. Males 
have their own songs as a genotype which is a sequential 
arrangement notes (an abstraction of a melodic line). Each 
female have a transition table that encodes musical 
expectations of their own. To clarify, transition tables contain 
information about how probable an antecedent-consequent 
note sequence is for the listener. Females use it to evaluate the 
coherency between the heard musical signal and their 
expectations. 

Each round of interaction models a mating process. After 
individual interactions breeding occurs between a female and 
a male counterpart, which is chosen by the female, to create a 
child with merged compositional preferences of its parents. 
The aim of each female is to choose the most eligible 
candidate for them to mate. Briefly, within a round each 
female interacts with a predefined number of performers that 
are randomly selected among males in order to choose a mate. 
Each selected male plays its song to the female and the female 
listener evaluates these songs and chooses the highest scored 
performer as the mate. 

With this model Werner and Todd (1997) examines 
whether the songs of this society evolves in subsequent 
generations contrastingly depending on the evaluation 
methodology of females. To put it in another way, females’ 
preference scheme can be to look for the most familiar song 
or to the one that has the most surprising elements. 
Accordingly, Werner and Todd (1997) claim that a surprise 
seeking assessment methodology can produce plausible 
musical diversity while attaining a co-evolutionary trend in 
male songs. 

As a follow up study, Bown and Wiggins (2005) altered 
above-mentioned model with two assumptions. In the first 
place, Bown and Wiggins (2005) was interested in topological 
distribution of the interacting agents. Therefore, interactions 
are constrained by allowing listeners to listen performers 
which are credibly close to them. Such a limited listening 
space assumption on performer selection contrasts with 
Werner and Todd (1997)’s free and random listener selection. 
Secondly, Bown and Wiggins (2005) does not try to capture 
cultural genetic evolution of musical signals. Rather, their 
main aim is to explore dynamic spatial organization of the 
agents in a limited social space. Therefore, agents are 
considered to be musically skilled to both perform and listen, 
though they do not have a sex that dictates a role on them. 

Respectively, in Bown and Wiggins (2005) every agent in 
the population, even the performers, has a transition matrix 
like listeners of Werner and Todd (1997). This transition table 
defines an agent’s compositional preference if it is 
performing, whereas it is a tool to assess the heard signal that 
encodes agent’s musical expectations if it is listening. It is still 
presumed that all agents are aware of a global closed set of 
lexicon consisting of notes. Each agent has a random starting 
position in space. Listeners score performers’ songs by 
summing up the individual expectation values for each 
transition. According to the result of the evaluation listener 
moves closer to or farther away from the performer. Hence, if 
the song has a high score listener moves close to that 
performer so that their chance to interact in upcoming rounds 

768



increases. The adverse scenario applies if the interaction is not 
successful.  

The most intriguing outcome of this model is the formation 
of stable musical subcultures via spatial clustering. Close and 
relatively smaller clusters seem to affect each other so that 
they can merge or change their position in space within time. 
However, relatively large clusters have their own isolated 
mainstream expectation trends. They are robust when 
compared to the smaller ones. Eventually, Bown and Wiggins 
(2005) shows how diversification of spatial musical 
expectations emerges and evolve within a musical culture 
where distinct subcultures have an influence on each other. 

III. MODEL 
The model that is going to be presented in this section 

primarily aims to capture a society of musical agents with 
random musical expectations at the outset which can attain a 
state where musical expectations of individuals will allow 
them to compose melodic lines that will be pleasing when 
listened by peers. It is assumed that for performers to be 
appreciated by listeners their compositions must satisfy 
expectations of the audience. That is to say, assumptions 
about agents and interactions are chosen in a way that an 
agreement on a commonly shared musical preference scheme 
can become observable with freely interacting agents. 

In this scope, musical expectations will pretty much be the 
same with what Meyer (1957) has proposed. Individual 
expectation schemes profile agents’ familiarity and foresight 
for certain patterns of successive musical events. It is 
presumed that agents anticipate for a specific precursor after 
each musical event they hear on the go. They get surprised if 
the precursor is not the one that they were expecting.  

In what follows, we will first present a formal description 
of our model in order to overlay how agents are implemented 
and how they interact with each other. Successively, we will 
list our predictions and model based preliminary assumptions. 
Finally, we will conclude this section as we elaborate on the 
experiments that we have designed to test our predictions. 

A. Agents and Interactions 
Our model is a computational abstraction of a population of 

musical agents A = {a1, ..., ai}, where population size NA = i. 
Agents are capable of playing the roles of both performer and 
listener. Each and every agent is equipped with a transition 
table T which defines their musical expectations. Transition 
table is a two-dimensional matrix where each dimension has 
the size of the lexicon NL. To demonstrate, assume that the 
lexicon only consists an octave of pitches, so that NL = 12. In 
this case, the lexicon would be L = {C, C#, D, D#, E, F, F#, G, 
G#, A, A#, B}.  Then T will be a 12 x 12 matrix where rows 
will represent all possible antecedent notes and columns will 
represent all possible consequent notes, such as: 
 

4.1.3 Agents and Interactions

Modified familiarity game models a population of musical agents A = {a1, ..., ai}, where pop-

ulation size NA = i. Agents are capable of playing the roles of both performer and listener.

Each and every agent is equipped with a transition table T , which defines their musical ex-

pectations. Transition table is a two-dimensional matrix, where each dimension has the size

of the lexicon NL. To demonstrate, assume that the lexicon only consists an octave of pitches,

so that NL = 12. Then T will be a 12 x 12 matrix, where rows will represent all possible

antecedent notes and columns will represent all possible consequent notes, such as:

Let L = {C,C#,D,D#, E, F, F#,G,G#, A, A#, B}

Then, T =

2
66666666666666664

↵C,C ↵C,C# · · · ↵C,A# ↵C,B
...

...
. . .

...
...

↵B,C ↵B,C# · · · ↵B,A# ↵B,B

3
77777777777777775

where 0  ↵ni,n j  1 for 8ni, n j 2 L

Within the transition table a cell will define how much an agent expects a specific antecedent-

consequent note pair to occur successively. For instance, the value of ↵D,F# will give us the

amount of expectancy of an agent to hear an F# after it hears an instance of D within a signal.

All agents start the game with a flat transition table, that is all ↵ in T has the value 0 at t = 0.

Every agents musical expectancies are dynamically shaped with readjusting modifications on

their transition tables with respect to the success of the interactions that they get involved

throughout the simulation.

Accordingly, agents of this model can be characterized with their table of musical expectan-

cies as their aim in each interaction is to evaluate whether a musical piece is pleasant enough

in terms of satisfying their expectancy on bi-gram level. At this point, it should be kept in

mind that our transition table implementation only allows agents to devise bi-gram expecta-

tions (i.e. agents can have a specific expectation for the note pair C-G to occur successively,

but not for any longer n-gram sequences like C-G-F-C). Therefore, evaluation of the heard

melodic line will be carried out over individual successive bi-grams.

In each round of interaction a modified familiarity game is played. The rules of this game is
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Within the transition table a cell will define how much an 
agent expects a specific antecedent-consequent note pair to 
occur successively. For instance, the value of αD,F# will give 
us the amount of expectation of an agent to hear an F# after it 
hears an instance of D within a signal. All agents start the 
game with a flat transition table, that is all α in T has the value 
0 at t = 0. Every agent’s musical expectations are dynamically 
shaped with readjusting modifications on their transition 
tables with respect to the success of the interactions that they 
get involved throughout the simulation. 

Agents of our model can be characterized with their table 
of musical expectations T, as their aim in each interaction is to 
evaluate whether a musical piece is pleasant enough in terms 
of satisfying their expectations on bi-gram level. It should be 
kept in mind that our transition table implementation only 
allows agents to devise bi-gram expectations (i.e. agents can 
have a specific expectation for the note pair C-G to occur 
successively, but not for any longer n-gram sequences like 
C-G-F-C). Therefore, evaluation of the heard melodic line 
will be carried out over individual successive bi-grams. 

The rules of each round of interaction is as follows: 
1. Performer ax and listener ay is selected randomly 

from the population to interact, where x≠y and ax,ay 
∈ A. 

2. Performer ax composes a song S with predefined 
length NS by using its transition table Tx and plays it 
to the listener ay.  

3. Listener ay evaluates S by using its transition table Ty 
and conveys the success of the interaction to its 
counterpart. 

4. Participants ax and ay modify their transition tables Tx 
and Ty. 

To compose a melodic line agents complete the following 
steps: 

i. An empty song template S’ = [ ] is created.  
ii. A random note nk ∈ L is selected and placed in the 

template as the first note. At the end of this stage 
template with NS′ = 1 looks like S’ = [nk], where 
S’[1] = nk.  

iii. Rest of the song is recursively built in NS – 1 
iterations. In each recursion performer takes the last 
note S’[NS’] from the template and checks its 
transition table Tx for the most expected successor. 
This search is carried out with λ function which is 
defined as follows: 
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x , y and ax, ay 2 A.

2. Performer ax composes a song S with predefined length NS by using its transition table

Tx and plays it to the listener ay.

Agents complete following steps to compose:

(a) An empty song template S 0 = [] is created.

(b) A random note nk 2 L is selected and placed in the template as the first note. At
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(c) Rest of the song is recursively built in NS � 1 iterations. In each recursion, per-

former takes the last note S 0[NS 0] from the template and checks its transition table

Tx for the most expected successor. This search is carried out with � function,

which is defined in (4.1). � retrieves the most expected consequent for a given

antecedent. If there are more than one successors with the same expectancy value

then one of them is randomly chosen. In each iteration NS 0 increases by one and

composition is completed when NS 0 = NS .

�(S 0[NS 0]) = max(↵S 0[NS 0 ],ni) f or 8ni 2 L (4.1)

3. Listener ay evaluates S and conveys the success of the interaction to its counterpart.

(a) To evaluate a song agents use a local scoring policy, which is defined in (4.2).

Notably, success score is calculated in an additive fashion. In fact, the score could

also be calculated globally for a song, if the song had hierarchically organized

sections such as musical sentences or partitions. In that case, each musical section

would have its own score and the global song score would be the sum of the scores

of each section. However, within our model a musical signal represents just one

complete melodic line, therefore its pleasantness for the listener could be fixed on

summation of listeners expectancy values for each transition that they encountered

sequentially.

score =
NS�1X

k=1

↵S [i],S [i+1] (4.2)
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λ retrieves the most expected consequent for a given 
antecedent. If there are more than one successor 
notes with the same expectation value then one of 
them is randomly chosen. In each iteration NS’ 
increases by one and composition is completed when 
NS’ =NS.   

To evaluate a song success score is calculated in an 
additive fashion. To be clear, a musical signal represents one 
complete melodic line, therefore its pleasantness for the 
listener could be fixed on summation of listeners expectation 
values for each transition that they have encountered 
sequentially. Notably, agents use the following local scoring 
policy for evaluation:  
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of each section. However, within our model a musical signal represents just one

complete melodic line, therefore its pleasantness for the listener could be fixed on

summation of listeners expectancy values for each transition that they encountered

sequentially.

score =
NS�1X

k=1

↵S [i],S [i+1] (4.2)
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For the interaction to be successful agents must be familiar 

with antecedent-consequent note pairs that they hear in the 
song to some extend. This measure of familiarity is fixed on a 
predefined threshold θ. Agents use the evaluation function ε to 
assess a song, as it is presented in below: 
 

(b) For the interaction to be successful agents must be familiar with antecedent-

consequent note pairs that they hear in the song to some extend. This measure

of familiarity is fixed on a predefined threshold ✓. Agents use the evaluation func-

tion ✏ to assess a song, as it is presented in (4.3). Overall score for the song is

calculated by adding the listeners expectancy values for all transitions. However,

evaluation is completed over the whole song score. Therefore, each transition will

have an impact on the success of the song, but they will not be decisive for the

success individually.

✏(score) =

8>>><
>>>:

success f ul i f ✓ ⇤ (NS � 1)  score

unsuccess f ul i f score < ✓ ⇤ (NS � 1)
(4.3)

4. Participants ax and ay modify their transition tables Tx and Ty.

Listener ay always increases expectancy values for all transitions that it heard with-

out taking success into consideration. This is because, listeners familiarity for these

antecedent-consequent pairs increase as they encounter them in a song. However, per-

former ay modifies its table with regard to the listeners evaluation. Expectancy values

for all transitions are incremented if interaction was successful, otherwise they are de-

creased. It is crucial to mention that transition tables are also used for composition

other than evaluation. Thus, if an agent is performing its table defines its compositional

preferences. In accordance, performers update their tables to make further use of the

antecedent-consequent pairs that they gained success in previous interactions in their

upcoming compositions. On contrary, decrease in expectancy values after unsuccess-

ful interactions help them to avoid using those note pairs in future. Amount of this

modification is predefined by learning rate ⌧ for both increment and decrement. More

formally, agents use µ : T 7! T 0 function for table updates. Notably, it can be observed

from (4.4) that there is no inhibition while performing table updates. For instance, if

there are two C-G pairs in a song that ends up as a successful interaction, performer

and listener increases ↵C,G in their transition tables by 2 ⇤ ⌧. However, values for ↵C,ni ,

where 8ni 2 L, ni , G will not be inhibited. Therefore, T is not a pure probability

table, that is to say expectancy values in a column will not always add up to 1.0. In this

respect, an ↵ni,n j will just give us an expectancy value not a probability, for defining

how often an agent expects an ni, n j pair. This expectation is merely dependent on how

many times it heard that specific pair as a listener, or how many times it used it as a
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Overall score for the song is calculated by adding the 
listener’s expectation values for all transitions. However, 
evaluation is completed over the whole song score. Therefore, 
each transition will have an impact on the success of the song, 
but they will not be decisive for the success individually. 

Finally, listeners always increase expectation values for all 
transitions that they hear in the song without taking success 
into consideration in order to modify their transition tables. 
This is because, it is assumed that listeners familiarity for 
antecedent-consequent pairs increase as they encounter them 
in a song. However, performers modify their transition table 
with regard to the listeners’ evaluation. Performers increment 
expectation values for all transitions if the interaction was 
successful; otherwise they are decreased.  

It is crucial to mention that transition tables are also used 
for composition other than evaluation. Thus, if an agent is 
performing its table defines its compositional preferences. In 
accordance, performers update their tables to make further use 
of the antecedent-consequent pairs that they gained success in 
previous interactions in their upcoming compositions. On 
contrary, decrease in expectation values after unsuccessful 
interactions help them to avoid using those note pairs in 
future.  

The amount of this modification on expectation values is 
predefined by learning rate τ for both increment and 
decrement. Agents use µ:T→T’ function for table updates and 
it is formally defined as follows:  
 

performer in a successful interaction.

µ(T, S ) = T 0 =

8>>>>>>><
>>>>>>>:

↵S [i],S [i+1] = ↵S [i],S [i+1] + ⌧ f or 8i, 0 < i < NS i f success f ul

or listener

↵S [i],S [i+1] = ↵S [i],S [i+1] � ⌧ f or 8i, 0 < i < NS otherwise
(4.4)

As an example, Figures 4.1, 4.2 and 4.3 present an illustrative modified familiarity game in-

teraction to clarify composition, evaluation and memory update policies of interacting agents.

Let’s assume that NS = 10, ✓ = 0.5, ⌧ = 0.05 and L covers only one octave (specifically notes

within the range of C to B) for this particular case.

Performing agent ax will first create an empty song template S 0 with length 10 to compose

as it is shown in Figure 4.1. Therefore, whole composition process will take NS � 1 = 9

iterations. First note will be chosen randomly and it appears to be a C. To append the second

note performing agent finds the most expected successor for C from its transition table Tx.

In this example Tx[C][G] has the highest value in row Tx[C], for that reason G is appended

to S 0 as the second note. Remarkably, it can be observed from Figure 4.1 that both A# and

B can follow F in two di↵erent instances. This is because values for Tx[F][A] and Tx[F][B]

are equal and maximal in Tx[F] throughout this interaction. Accordingly, successive note for

F is chosen randomly among the set of most expected successors. Table look up is carried

on iteratively by the performer for NS � 2 iterations, since S 0 is filled with notes. When

composition is completed it is played to listener ay for an evaluation as the musical signal S .

Figure 4.1: (Model - Agents & Interactions) An illustrative case of how agents compose a
song.
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Notably, it can be observed from the above definition that 
the agents do not employ inhibition while performing table 
updates. For instance, if there are two C-G pairs in a song that 
ends up as a successful interaction, performer and listener 
increases αC,G in their transition tables by 2τ. However, values 
for αC,ni where ∀ni ∈ L, ni ≠  G will not be inhibited. 
Therefore, T is not a pure probability table, that is to say 
expectation values in a column will not always add up to 1.0. 
In this respect, an α ni,nj  will give us an expectation value, but 
not a probability, for defining how often an agent expects an 
ni,nj pair. This expectation is merely dependent on how many 
times it heard that specific pair as a listener or how many 
times it used it as a performer in a successful interaction. 

B. Model Predictions and Assumptions 
In a state of agreement a population can only have specific 

expectations on bi-gram level (as they only predict for 
successor notes), but throughout this agreement signals which 
are pleasant may have significant ossified n-gram melodic 
lines in them. Hence, it is predicted that if the population can 
agree on shared expectations their composition can employ 
significant usage of melodic progressions with length more 
than two. This prediction stems from the sequentiality of the 
musical signal. In order to clarify, a musical piece is presumed 
to be the sequential arrangement of atomic units that are notes 
from the lexicon set. Within this context, in a possible 
agreement state population will compromise on particular 
bi-grams as socially shared musical building blocks. 
Accordingly, when these come together sequentially they may 
form lengthier significant melodic lines. However, our model 
will not entail them to be hierarchically or categorically 
ordered as our agents will not be capable of representing the 
relationships between these building blocks.  

In accordance, specialized model specific assumptions for 
the problem that we are interested in can be listed as: 

• Identical Agents: Every agent is cognitively and 
psychologically capable of composing musical pieces and 
perceiving them. The channels that are used for performance 
and audition are separable. Moreover, each agent’s musical 
expectations are unique. Agents are not able to directly access 
to others expectations. They can make limited estimations 
about a peer’s musical expectations over its composition when 
they interact. Agents are not bestowed with a representation of 
the global system behavior and none of them have a direct 
impact on it. Therefore, system control is decentralized so that 
only local interactions can superimpose an aggregate 
system-wide behavior.  

• Closed Lexicon: Agents are aware of a stable and closed 
lexicon of sounds. Songs can only be composed with this set 
of sounds which is an abstraction of musical notes generally 
ranging over several octaves. For instance, if lexicon is set to 
be two octaves, then it will consist all pitches in between 
C2-B3. This assumption is required to ensure that all agents 
are aware of all possible musical pitches which can be 
included in a composition. Computationally it is required to 
presume that such a global closed lexicon exists, since agents 
enhance their compositional preferences in accordance with 
their expectations over all possible bi-grams that can be built 
upon this set while they are interacting.  

• Closed Community: Throughout the simulation 
population size will be kept constant. Interacting agents will 
not be replaced with new ones at any stage; hence there will 
not be any disturbance on overall population behavior. 
Briefly, it is aimed to investigate significant consequences of 
agent interactions (such as emergence of significant 
compositional preferences or reusable musical patterns) while 
population is reaching to an agreement.  

• Free Interactions: Every agent is equally probable to 
interact with each other. Any kind of topological distribution 
is omitted. Participants of an interaction are randomly chosen 
among the population and any agent can be chosen to 
participate in an interaction. Such a free interaction 
assumption assures every agent to equally effect others 
musical expectations.  

• Consecutive Interactions: Agents cannot concurrently 
interact with each other. In fact, parallel interactions are 
prevented as a consequence of assumption of free interactions. 
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Concurrent interactions can cause conflicting memory updates 
as interacting parties are randomly chosen. Contradictions on 
how to perform knowledge updates will be computationally 
restrictive and it is avoided as it can result in abnormalities on 
population dynamics. 

• No Boredom: Agents cannot get bored with extremely 
familiar signals. In other words, interactions are successful 
even if entire antecedent-consequent note pairs of a song are 
the ones which are expected by the listener. This assumption 
is required if an absolute convergence of a shared musical 
expectations is awaited. In our model dynamic restructuring 
of individual preferences is expected to be manifested 
throughout the learning phase before convergence. 

C. Experiments 
With the model that is described above two interrelated 

experiments are conducted to investigate the overall behavior 
of the population with respect to various simulation 
parameters. These experiments are: 

1. Test for agreement of expectation tables. 
The simulation is run for a base case with 50 agents (NA), 

where the lexicon size was two octaves (NL) to examine 
whether agents can converge on a shared musical preference. 
In this specific case agents composed musical signals of size 
32 (NS), and their learning rate (τ) was 0.05. Successively, 
population dynamics is investigated for varying number of 
agents (NA = 25, 50, 75), lexicon size (NL = 12, 60, 120), 
signal length (NS = 16, 24, 32, 64), learning rate (τ = 0.025, 
0.05, 0.075, 0.1) and success threshold (θ = 0.3, 0.4, 0.5, 0.6) 
independently. 

2. Test for emergence of reusable units. 
Once more the simulation is run for NA = 25, NL = 12, NS = 

12, τ = 0.05, θ = 0.5, but throughout this run a global 
transition table (GT) is calculated for each round of 
interaction. This global table represents overall average of the 
bi-gram expectations for the whole population. GT can be 
defined as follows: 
 

expectancy values of transitions in Ty. However, performers either decrement expectancy

values for each transition with ⌧ if the interaction was unsuccessful or increment them if the

evaluation was successful.

4.1.4 Experiments

With the model that is described above two interrelated experiments are conducted to inves-

tigate the overall behavior of the population with respect to various simulation parameters.

These experiments are:

1. Test for agreement of expectation tables.

The simulation is run for a base case with 50 agents (NA), where the lexicon size was

two octaves (NL) to examine whether agents can converge on a shared musical prefer-

ence. In this specific case agents composed musical signals of size 32 (NS ), and their

learning rate (⌧) was 0.05. Successively, modified familiarity game dynamics is inves-

tigated for varying number of agents (NA = 25, 50, 75), lexicon size (NL = 12, 60, 120),

signal length (NS = 16, 24, 32, 64), learning rate (⌧ = 0.025, 0.05, 0.075, 0.1) and

success threshold (✓ = 0.3, 0.4, 0.5, 0.6) independently.

2. Test for emergence of reusable units.

Once more the simulation is run for (NA = 25, NL = 12, NS = 12, ⌧ = 0.05, ✓ = 0.5),

but throughout this run a global transition table (GT ) is calculated for each round of

interaction. This global table represents overall average of the bi-gram expectations for

the whole population. GT can be defined as:

T [i][ j] = ↵ni,n j f or 8ni, n j 2 L

GT [i][ j] =
Pk=NA

k=1 Tk[i][ j]
NA

In this case, GT is examined particularly to investigate whether all agents can form a

consensus on expectations for specific note pairs. In this experiment, a chi-square (�2)

significance test is applied to a corpus of musical signals to find significant collocations.

Corpus (Cx) is the collection of signals that are exchanged between interacting agents

after overall success rate S(t) exceeds x. S(t) can be calculated as:

S (t) =
Total Number o f S uccesses at Round t

t
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In this case, GT is examined particularly to investigate 
whether all agents can form a consensus on expectations for 
specific note pairs. In this experiment a chi-square (χ2) 
significance test is applied to a corpus of musical signals to 
find significant collocations. Corpus (Cx) is the collection of 
signals that are exchanged between interacting agents after 
overall success rate S(t) exceeds x. In addition, S(t) is the 
number of average successful interactions throughout the 
simulation 

In this test three different corpora (C0.0, C0.5 and C0.9) are 
generated for S(t) = 0.0, 0.5, 0.9. C0.0 consists all signals that 
are composed from the beginning of the game. C0.5 and C0.9 
includes signals after S(t) = 0.5 and 0.9 respectively. It could 
be presumed that an agreement is formed after S(t) = 0.9, 
because principally it is guaranteed for this setup that agents 
were interacting successfully for at least 40,000 rounds to 
reach this success rate. So, C0.9 supposedly only includes 
signals of the agreement state. χ2 is applied to all these three 
corpora to observe the dynamic nature of consensus 

formation. 
χ2 values for each possible bi-gram that can be formed by 

using the notes of the lexicon makes it possible to test whether 
they significantly co-occur successively throughout the 
agreement stage. In fact χ2 significance test can be extended 
to n-grams of any length, though it is crucial to note that the 
degrees of freedom changes when applying χ2 to find out 
significant collocations for varying lengths. In particular, for 
χ2 test where n is the length of the significant collocation that 
is being tested there is (n-1)2 degrees of freedom (i.e. for  
tri-grams there is 4 degrees of freedom and 4-grams there is 9 
degrees of freedom). In our experiment we apply χ2 test on 
the corpus for all possible collocations of bi-grams, tri-grams 
and 4-grams. That is to say, it is examined whether any 
significant musical pattern of length three or four can emerge 
from agents’ limited bi-gram musical expectations. This test is 
carried out in correlation with dynamic evolution of global 
musical expectations that is defined by GT. 

IV. RESULTS 

A. Population Dynamics 
In the beginning of the game agents do not have specialized 

preferences for composition and assessment. After successful 
interactions they perform memory updates in order to build 
their own private tables of musical expectations. Accordingly, 
growth of the success rate will signify convergence on a state 
of agreement on global musical expectations as agents start to 
interact successfully more often. In fact, an investigation of 
individual interactions will be barely useful to study 
population dynamics since large number of random and free 
interactions result in an unmanageable stochasticity. In this 
respect, throughout this section success rate S(t) and time of 
convergence will be our primary measures to interpret model 
performance. Notably, all results that are going to be 
presented in this section are averaged over 10 runs for each 
test case.  

 

Figure 1.  Success rate of interactions and convergence on a 
shared table of expectations. Simulation is run for NA = 50, 
NL = 24, NS = 32, τ = 0.05, Θ = 0.5.  

Figure 1 presents change of S(t) within time for a baseline 
simulation that tests whether agents can ever come to a state 
of agreement when convenient conditions are provided. It can 
be observed that success rate increases rapidly at the outset 
and it grows steadily till S(t) = 0.9. Within this phase, most of 
the learning takes place. After S(t) = 0.9 rate of increase in 
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success rate decreases and the curve flattens since learning is 
brought to a completion.  

This distinctive success rate curve denotes a decisive 
minimal agreement as shared musical expectation scheme 
becomes spread among the population. However, time of 
convergence is heavily dependent on population and agent 
characteristics, such as population size, learning rate of the 
agents, success threshold, number of notes used for 
composing and length of the signal. 

 

Figure 2. Effect of population size NA on convergence. Simulation 
is run for NL = 24, NS = 32, τ = 0.05, Θ = 0.5. Convergence 
trends for NA = 25, 50 and 75 and presented.  

 

Figure 3.  Effect of success threshold Θ on convergence. 
Simulation is run for NA = 50, NL = 24, NS = 32, τ = 0.05. 
Convergence trends for Θ = 0.3, 0,4, 0.5 and 0,6 are 
presented. 

Effects of population size on time of convergence can be 
observed in Figure 2, particularly for NA = 25, 50 and 75. For 
larger populations agreement comes late. Therefore, 
increasing the population size will also delay convergence 
since dominating bi-gram expectations has to be spread to the 
individuals of the population to attain an agreement. It could 
be deduced that all agents must participate in a considerable 
amount of interaction to learn what others expectations are for 
a global transition table to become observable. As a 
consequence, greater number of interactions is required for 
the members of larger communities to interchange their 
preferences on winning note pairs. 

Agents’ learning is dependent on two independent factors 
that are success threshold θ and learning rate τ. To evaluate a 

song, raw sum of expectations for each bi-gram of that song 
must exceed a specific success threshold. In consequence, θ 
defines a lower boundary for a song to be pleasant. In other 
words, θ determines how much performers and listeners 
transition tables should overlap for the interaction to be 
successful. In Figure 3 varying S(t) curves are presented for 
increasing success thresholds 0.3, 0.4, 0.5, 0.6, and it could be 
observed that time of convergence increases with increasing θ. 
This is because listeners look for higher number of expected 
transitions in the song to classify the song acceptably familiar 
when θ is large. 

 

Figure 4.  Effect of learning rate τ  on convergence. Simulation is 
run for NA = 50, NL = 24, NS = 32, Θ = 0.5. Convergence 
trends for τ  = 0.025, 0.05, 0.075 and 0.1 are presented.  

 

Figure 5. Effect of signal length NS on convergence. Simulation is 
run for NA = 50, NL = 24, τ = 0.05, Θ = 0.5. Convergence 
trends for NS = 16, 24, 32 and 64 are presented.  

From Figure 4 it can be observed that time of convergence 
significantly depends on τ. System’s learning is optimal at 
around τ = 0.5. Within the range 0.2 < τ < 0.7 system tends to 
converge rapidly. However, for greater or smaller values of τ 
time of convergence increases. In particular, τ determines how 
fine agents search the state space. So, for both considerably 
small and large learning rates this search is not optimal, thus 
performance is affected negatively. When τ is fairly small 
increase in expectation values for antecedent-consequent pairs 
of successful interactions are negligibly small so that the 
population cannot bring out winning bi-grams promptly. In a 
similar fashion, if τ is larger than the aforementioned 
boundary agreement comes late since expectation values for 
bi-grams that brings success drastically alters after memory 
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updates throughout the learning phase. 
In Figure 5 alteration of S(t) is presented with respect to 

signal lengths NS = 16, 24, 32 and 64. Notably, change in 
signal length does not affect convergence up to a hard 
boundary. From the figure it can be observed that S(t) curves 
overlap for NS = 12, 24 and 32. However, when signal length 
grows significantly larger (such as NS = 64), S(t) drastically 
drops. Besides, S(t) for NS = 64 can not even catch up success 
rates of NS = 12, 24 and 32. Lengthier signals consist 
relatively larger amounts of transitions to be evaluated. 
Consequently, it is more likely for an antecedent-consequent 
pair to be involved in a composition more than once for larger 
NS. Hence, when signal size increases expectation values for 
winning bi-grams that are involved in performers 
compositions are intensely modified. Therefore, population 
could not easily settle on a dominating set of bi-grams. 
Indeed, an adverse effect should be expected for shorter 
signals. However, from Figure 5 it could be deduced that 
performance does not always improve for short signals. 
Arguably this is because, impact of other independent 
parameters such as τ and θ supervenes the impact of NS on 
learning rate. 

 

Figure 6.  Effect of lexicon size NL on convergence. Simulation is 
run for NA = 50, NS = 32, τ = 0.05, Θ = 0.5. Convergence 
trends for NL = 12, 60 and 120 presented. 

Finally, Figure 6 presents how lexicon size NL effects 
convergence. Lexicon size determines the size of the state 
space. If agents are allowed to use greater number of notes in 
their compositions, the amount of all possible bi-grams that 
can be produced from the lexicon grows exponentially. As 
long as the state space grows the time required for the 
population to form an agreement in one of the attractor states 
increases. Consequently, it can be observed from Figure 6 that 
an increase in lexicon size lags convergence. 

B. Self-Organization and Emergence of Reusable Units 
In this section, a representative run of the simulation will 

be examined to present dynamic self-organization of the 
population. In Figure 7 it can be observed that population 
convergences on a global table of expectations roughly at 
50,000. At the end of 200,000 rounds S(t) converges to 1.0. 
The global transition table at this point is presented in Table 1. 

In the global transition table (GT) there are thirty 
antecedent-consequent pairs, which have significantly high 
expectation values (i.e. C-C, D#-E, etc.). These note pairs are 
the ones which are commonly agreed on by the population at 

exactly t = 200,000. However, when we perform a χ2 to a 
corpus of signals for S(t) ≥ 0.9 test yields thirty-two bi-grams 
that significantly appear successively throughout the 
agreement state. For instance, with a quick comparison 
between Tables 1 and 2-(a) it could be seen that B-G and B-B 
bi-grams do not have high expectation values in GT, whereas 
they appear to be significant according to the χ2 test. This 
dissimilarity arises from self-organizing nature of the system. 

To be clear, dominating bi-grams are not deterministically 
predefined. Interactions between the agents would result in 
alterations in the set of winning bi-grams throughout the 
game. In other words, winning bi-grams can lose their 
significance or adversely a non-significant bi-gram can 
become a winning pair dynamically. This spontaneous 
restructuring is continuously carried on. For instance, Tables 1 
and 2-(a) show that B-G and B-B were the winning pairs at 
early stages of agreement, however they lost their significance 
later on. 

Self-organization becomes prominent when we perform χ2 
test to C0.0 and C0.5. For C0.0 (notably all signals of the game 
included in this corpus), χ2 test shows that 140 of the all 
possible 144 bi-gram collocations were significant. This 
means that the population nearly searched for all states 
throughout the game. Successively, for C0.5 there are only 44 
bi-grams, so it can be deduced that individuals of the 
population converge on an attractor state by fine-tuning their 
expectation tables to narrow down the set of significant 
bi-grams. Set of winning pairs can be different for each 
distinct run, however convergence on a specific set of 
bi-grams is being attained outright. 

 

Figure 7. S(t) curve for NA = 25, NL = 12, NS = 12, τ = 0.05, Θ = 
0.5.  

As a consequence, all winning antecedent-consequent note 
pairs become bi-gram building blocks of a musical signal. In 
Tables 2-(b) and 2-(c) it can be concluded that some 
fragments of signal of length three and four can be 
significantly observed by applying χ2 test on C0.9. There are 
74 observable tri-grams and 7 4-grams that are significantly 
used in melodic lines through the agreement. Notably, there is 
a vast difference between the number of significant tri-grams 
and 4-grams. As the length increases the number of significant 
n-gram melodic lines decrease. This trend could be grounded 
on the learning trend of the population. All these n-gram note 
sequences are composed of sequential arrangements of some 
of the winning bi-grams, thus it could be stated that these 

773



n-gram sequences are the commonly shared pseudo melodic 
lines of the population. Hence, winning bi-grams become the 
reusable musical units for the population to compose lengthier 
structures. 

Table 1. Global Transition Table after 200,000 interactions for 
NA = 25, NL = 12, NS = 12, τ = 0.05, Θ = 0.5. Bold values 
indicate the bi-grams, which are currently agreed on by the 
population. 

Table 4.1: (FG - Self-Organization & Emergence) Global Transition Table after 200,000
interactions for NA = 25, NL = 12, NS = 12, ⌧ = 0.05, ✓ = 0.5. Bold values indicate the
bi-grams which are currently agreed on by the population.

c c# d d# e f f# g g# a a# b
c 1.000 0.012 0.020 0.026 0.038 0.012 0.022 0.012 0.018 0.032 0.054 0.024

c# 0.032 1.000 0.048 0.130 0.024 0.012 0.048 0.054 0.088 0.116 0.006 0.012
d 0.012 0.022 1.000 0.074 0.044 0.060 0.020 0.014 0.012 0.150 0.022 0.024

d# 1.000 0.094 0.046 0.088 1.000 0.012 0.008 0.016 0.018 1.000 0.008 0.098
e 1.000 0.008 0.016 1.000 1.000 1.000 0.048 0.056 0.018 0.028 1.000 0.010
f 1.000 0.026 0.996 0.006 1.000 0.050 1.000 1.000 0.016 0.018 0.022 1.000
f# 0.022 0.008 0.040 0.018 0.010 0.100 1.000 0.044 0.150 0.030 0.008 0.014
g 1.000 0.012 0.012 0.004 0.012 1.000 0.014 0.072 0.076 0.016 0.074 0.028

g# 1.000 0.032 0.024 0.040 0.012 0.014 1.000 0.026 0.078 0.018 1.000 0.022
a 1.000 0.014 0.022 0.020 1.000 0.030 0.046 0.010 1.000 0.054 1.000 0.016

a# 1.000 0.056 0.070 0.018 0.040 0.014 0.012 0.010 0.054 0.012 1.000 0.044
b 1.000 0.056 0.008 0.072 0.484 0.012 0.006 0.504 0.032 0.012 0.018 0.096

carried on. For instance, Tables 4.1 and 4.2-(a) show that B-G and B-B were the winning

pairs at early stages of agreement, however they lost their significance later on.

Self-organization becomes prominent when we perform �2 test to C0.0 and C0.5. For C0.0

(notably all signals of the game included in this corpus), �2 test shows that 140 of the all

possible 144 bi-gram collocations were significant. This means that the population nearly

searched for all states throughout the game. Successively, for C0.5 there are only 44 bi-grams.

Accordingly, it can be deduced that individuals of the population converge on an attractor

state, by fine tuning their expectation tables to narrow down the set of significant bi-grams.

Set of winning pairs can be di↵erent for each distinct run, however convergence on a specific

set of bi-grams is being attained outright.

As a consequence, all winning antecedent-consequent note pairs become bi-gram building

blocks of a musical signal. In Tables 4.2-(b) and 4.2-(c) it can be concluded that some frag-

ments of signal of length three and four can be significantly observed by applying �2 test

on C0.9. There are 74 observable tri-gram and 7 4-grams that are significantly used in com-

position through the agreement. Notably, there is a vast di↵erence between the number of

significant tri-grams and 4-grams. As the length increases the number of significant n-gram

melodic lines decrease. Arguably, this trend could be grounded on the learning trend of the

population. Moreover, all these n-gram note sequences are composed of sequential arrange-

ment of some of the winning bi-grams. It could be stated that these n-gram sequences are the

commonly shared pseudo melodic lines of the population. Hence, winning bi-grams become
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Table 2. (a) Significant bi-gram collocations found with χ2 on C0.9. 
(b) Significant tri-gram collocations found with χ2 on C0.9. (c) 
Significant 4-gram collocations found with χ2 on C0.9. 
Simulation is run for NA = 25, NL = 12, NS = 12, τ = 0.05, Θ = 
0.5. 

(a) 
Bi-grams 

(b) Tri-grams (c) 
4-grams 

C-C 
C#-C# 
D-D 
D#-C 
D#-E 
E-A 
E-C 

E-D# 
E-E 
E-F 

E-A# 
F-C 
F-D 
F-E 
F-F# 
F-G 
F-B 

F#-F# 
G-C 
G-F 

G#-A# 
G#-C 
G#-F# 
A-C 
A-E 

A-G# 
A-A# 
A#-C 

A#-A# 
B-C 
B-G 
B-B 

C-C-C 
C#-C#-C# 

D-D-D 
D#-C-C 
D#-E-C 

D#-E-D# 
D#-E-E 
D#-E-F 

D#-E-A# 
D#-A-C 
D#-A-E 

D#-A-G# 
D#-A-A# 

E-C-C 
E-D#-C 
E-D#-E 
E-D#-A 
E-E-C 

E-E-D# 
E-E-E 
E-E-F 

E-E-A# 
E-F-C 
E-F-D 
E-F-E 
E-F-F# 
E-F-G 
E-F-B 

E-A#-C 
E-A#-A# 

F-C-C 
F-D-D 
F-E-C 

F-E-D# 
F-E-E 
F-E-F 

F-E-A# 

F-F#-F# 
F-G-C 
F-G-F 
F-B-C 
F-B-E 
F-B-G 

F#-F#-F# 
G-C-C 
G-F-C 
G-F-D 
G-F-E 
G-F-F# 
G-F-G 
G-F-B 

G#-C-C 
G#-F#-F# 
G#-A#-C 

G#-A#-A# 
A-C-C 
A-E-C 

A-E-D# 
A-E-E 

A-E-A# 
A-G#-C 
A-E-F 

A-G#-F# 
A-G#-A# 
A-A#-C 

A-A#-A# 
A#-C-C 

A#-A#-C 
A#-A#-A# 

B-C-C 
B-E-A# 
B-G-C 
B-G-F 
B-B-B 

D#-E-F-B 
E-E-F-B 
F-E-F-B 
F-G-F-B 
A-E-F-B 
B-G-F-B 
B-B-B-B 

 

 
To put it differently, all possible signals with length NS that 

can be generated from the lexicon L create the state space for 
the agents. As the population dynamically self-organize to 
reach a consensus on bi-gram musical expectations they agree 
on a set of winning antecedent-consequent pairs. This 

self-organizing behavior can also be described as a search 
problem where interactions and consecutive memory updates 
help the population to settle on an attractor state. Notably, 
within this state performing agents have a favor to use 
winning bi-grams in their compositions. Since NS > 2 
compositions within this attractor state involves melodic 
patterns that are greater than length two which can be 
classified as pleasant by the listeners. This is because, 
throughout the agreement phase performing agents append the 
winning bi-grams sequentially to compose a song. 

V. CONCLUSION 
In this paper, we have presented a computational model of 

a multi-agent musical society which can capture social 
dynamics of musical agreement in terms of shared musical 
expectations. We have found that a closed community of 
agents can converge on a global musical expectations scheme 
without any external intervention and centralized control 
when specific baseline conditions are provided. These 
conditions can be characterized with simulation parameters 
such as population size, learning rate of the agents, success 
threshold, lexicon size and signal length.  

Our method of modeling has proven to be successful to 
investigate how musical structures change in time within a 
culture with pairwise interactions of the involved agents. 
Overall, it is presented that a closed community can attain a 
state where it has its own specialized musical expectations. 
The change in cultural know-how of compositional 
preferences and aesthetic evaluation of a song can be modeled 
in a self-organizing system as a continuously evolving 
dynamic phenomenon. Moreover, it is concluded that building 
blocks of a musical piece can emerge as a result of the 
sequential organization while agents converge on the shared 
expectation scheme. 

The model and the findings are novel with respect to 
previous research of cognitive musicology. However, it has 
been presented that emergence of musical conventions could 
be studied in a model in which musical agents are only acting 
in accordance with their musical expectations. Within this 
context, emergence of socially shared musical conventions 
such as harmonic and melodic progressions and rhythmic 
movements might be worked out over the structural 
characteristics of a musical piece like we did. 

Particularly, it should be kept in mind that dynamics of real 
world musical interactions are most likely different from this 
computational model. We are abstracting the musical signal in 
a way that we are only representing its constituents while 
leaving out the whole auditory experience. Therefore, 
aforementioned findings may not be always fully applicable 
for real world musical system. 

Briefly, our formalization provides a broad framework, 
which can be extended in various ways. Herein, we will 
conclude with some of these possible proposals for future 
research. 

Our agents are using their transition tables/expectations to 
compose and listen. However, they are not capable of working 
out the relationships between the constituents of a song. Tonal 
categories create the hierarchical organization in a musical 
piece. In a simplistic way, modality, tonality and any other 
hierarchical system is based on how tones are related with 
each other. Thus, agents could be modified in a way that they 
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could track how often several tones come together to find out 
the relationship between them.  

In our model a constant learning rate is used for agents to 
perform table updates both for incrementing expectation 
values after successful interactions and decrementing after 
unsuccessful ones. An experiment on differing increment and 
decrement rates (possibly non-equal increment and decrement 
rates) might cause intriguing impacts on convergence trends.  

Moreover, the number of winning bi-grams, which are 
agreed on, might be bound to simulation parameters. It might 
be valuable to examine whether the set of winning antecedent- 
consequent pairs depend on simulation parameters.  

Finally, our model is suitable for studying other sequencing 
tasks in a broader sense. For instance, agents and interactions 
could be modified to tackle similar problems from the domain 
of evolutionary linguistics. Emergence and evolution of 
phonemes is such a sequencing task which is eminent to study 
emergence of spoken linguistic communication. With a 
modified version of our model, which will intend to capture a 
phoneme sequencing task, it can be studied whether the 
modeled society emerges distinctive patterns of phoneme 
sequences on the way to attain a social agreement.  
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