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ABSTRACT
Modeling tonal induction dynamics from naturalistic music stimuli 
usually involves slide-windowing the stimuli  in analysis frames or 
leaky memory processing. In both cases, the appropriate selection of 
the time-scale or decay constant is critical, although rarely discussed  
in  a  systematic  way.  This  study  shows  the  qualitative  and 
quantitative impact that time-scale has in the evaluation of a simple 
tonal  induction model,  when the  concurrent  probe-tone method is 
used to capture continuous ratings of perceived relative stability of 
pitch-classes.  Music stimulus is slide-windowed using many time-
scales, ranging from fractions of second to the whole musical piece. 
Each frame is analysed to obtain a pitch-class profile and, for each 
temporal  scale,  the  time  series  is  compared  with  the  empirical  
annotations. Two commonly used frame-to-frame metrics are tested: 
a) Correlation between the 12-D vectors from ratings and model. b)  
Correlation  between  the  24  key activation  strengths,  obtained  by 
correlation of the 12-D vectors  with  the Krumhansl  and Kessler's  
key  profiles.  We  discuss  the  metric  artifacts  introduced  by  the 
second representation, and we show that the best performing time-
scale,  minimizing  the  root  mean-square  of  the  frame-to-frame 
distances  along  time,  is  far  longer  than  short-time  memory 
conventions. We propose a temporal multi-scale analysis method as 
an  interactive  tool  for  exploring  the  effect  of  time-scale  and 
different  multidimensional  representations  in  tonal  cognition 
modeling.

I. INTRODUCTION
Tonal  context  induction  refers  to  the  development  of  a 

sense of key in listeners exposed to music stimuli. Cognitive 
and computational modeling of such process is challenged by 
the elusive description of tonality and by the relatively large 
and  undefined  temporal  spans  required  for  capturing  that  
sense of context. For complex polyphonic stimuli,  the time-
scales involved in the process depend, in general and among 
other factors, on the tonal material temporal  delivery, which 
can  vary notably as music unfolds in  time.  The concurrent  
probe-tone method allows capturing real-time responses from 
subjects  exposed  to  music  of  any  complexity,  providing 
quantitative ratings of the perceived relative stability of pitch-
classes over time. This information is related to the concept 
of key strength, and it can be used to evaluate computational  
models  of tonality induction.  Many of the  current  models,  
however,  apply  rigid  temporal  analysis  assumptions, 
obscuring  the  interpretation  of  the  tonality  phenomenon 
respecting time.

II. BACKGROUND
Most  empirical  methodologies  aiming  to  model  tonal 

context cognition, usually under the terms sense of key or key  
induction, have  relied  upon  stop-and-rate  retrospective 
judgement  tasks  (Krumhansl  &  Kessler,  1982).  In  these 

settings, listeners are exposed to some music stimulus, after 
which they are asked to rate  a certain  subjective perceptual 
magnitude.  These methods provide a notable control  of the 
experimental  variables,  but  they  present  interpretative 
concerns about the nature of the captured features, given that 
sense of key is derived from indirect measurements -e.g. the 
relative stability between pitch-classes using  the probe-tone 
technique-,  and  because  ratings  are  produced  after the 
stimulus  (Krumhansl,  1990).  Modeling  tonal  cognition 
dynamics -the evolution of the sense of key as music unfolds 
in time- from these approaches is even more problematic and 
time consuming (Vos & Leman, 2000).

Real-time response experimental tasks have been proposed 
to deal with some of these problems, such as the concurrent  
probe-tone method (Toiviainen & Krumhansl,  2003). Under 
this approach, a realistic complex music stimulus is used, and 
the  probe  tones  are  played  concurrently  along  music 
listening.  Subjects  rate  continuously  the  goodness-of-fit 
between the probe tones and the music stimulus by dragging 
a slider  in  a non-stop setting.  Two important  aspects make 
this  approach  differ  substantially from the  classical  probe-
tone tasks. First, the probe tones sound simultaneously with 
the music instead of being presented after the stimuli. While 
this  might  be  seen  as  an  advantage  respecting  the 
retrospective  judgements,  it  represents  a  very  different 
musical  reality.  A quasi-continuous tone sounding along an 
independent tonal  discourse  might  have  a  variety  of 
psychological effects on listeners, and it is not clear whether 
listeners  would keep a  constant  criterion  in  their  attention 
and  judgements.  The  second  problem  comes  with  the 
calibration of the rating responses, in terms of the consistent  
use  of  continuous  scales  and  the  unpredictable  motoric 
mediation delays (Koulis et al., 2008). This has an enormous 
impact on the statistical significance of the intra-subject and 
inter-subject analysis.

Several  problems  arise  for  evaluating  computational 
models of tonal induction, when continuous ratings are taken 
as reference for comparison. Temporal scale is a fundamental  
parameter for describing contextual musical features, as it is 
critical  for  time series  analysis  in  general.  Many window-
based  key-finding  models  from  symbolic  notation 
(Krumhansl,  1990; Temperley, 2001) analyse the stimuli  in 
beats or bars, in order to produce 12-D profiles comparable to 
the  probe-tone ratings.  In  the  audio domain,  where  metric 
segmentation is not always reliable, this is often implemented 
by  an  overlapping  sliding  window  of  constant  duration 
(Gómez,  2006).  Similar  time-scale decisions  apply to most 
models  inspired  on  auditory processing  (Leman,  2000),  by 
using a decay constant to simulate leaky memory processing. 
One  recurring  argument  about  the  time-scale  selection 
(Toiviainen & Krumhansl, 2003) is that it should fall within 
the  short-time  memory  constraints,  agreed  around  3-8 
seconds,  and  being  tuned  according  to rhythmic  or  metric 
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assumptions,  or  as  a  compromise between smoothness  and 
discontinuity of the resulting signals.

There  have  been  few  systematic  approaches  to 
understanding  the role of temporal  scale in  modeling tonal  
induction from probe-tone methods, most of them around the 
discussion  about  short-term  and  long-term  memory 
implications.  In  (Leman,  2000),  the  echo  constant  of  the 
proposed global image model is manipulated in steps of 0.2 
seconds, spanning  a range of 0.2 to 5 seconds, in  order  to 
find  the  optimal  value  fitting  empirical  correlation  trends 
among  several  context  inducing  sequences  (Krumhansl  & 
Kessler, 1982).

Manipulation of the leaky memory decay constant has been 
proposed as interactive parameter in a real-time visualization 
model of tonal induction (Toiviainen, 2008), but no attempts 
of empirical validation were done. Several window sizes have 
been explored using Chew's spiral  array for modeling tonal  
boundaries (Chew, 2006). In her work, evaluation was based 
on coarse structural  -offline-  annotations  by experts  or  key 
indications in the score. Multiple time-scale analysis methods 
have been used, in both MIDI (Sapp, 2005) and MIDI/audio 
domains (Martorell & Gómez, 2011), for hierarchical visual 
analysis of tonality, key profile comparison, and pitch-space 
interactive inspection, but no validation has been approached 
respecting empirical ratings over time.

Aside  from  time-scale,  evaluation  issues  arise  from  the 
multidimensional  (12-D) nature of the involved time series. 
Tonal  induction  models  are  often  evaluated  through  an 
indirect space of key strengths. This mapping is achieved by 
correlating the 12-D vectors with the ring-shifted key profiles 
proposed  by  Krumhansl  and  Kessler  -henceforth  K-K's 
profiles-. Vectors from both ratings and model are projected 
into this space in order to be compared, and model evaluation 
is  discussed  in  these  terms  -after  mapping-  (Krumhansl,  
1990;  Toiviainen  & Krumhansl,  2003).  This  mapping  has 
been  proposed  in  a  variety  of  dimensional  reduction 
solutions,  most  of  them  for  visual  comparison  purposes, 
including multidimensional unfolding into toroidal inter-key 
spaces  (Krumhansl  &  Kessler,  1982;  Krumhansl  & 
Toiviainen,  2003)  and  self-organized  maps  (Toiviainen, 
2008;  Janata,  2007).  Despite  their  visual informativeness, 
such  frame-based  representations  do  not  provide  a  proper 
quantitative comparison between models, given that  they do 
not  represent  the  actual  listener's  ratings,  but  their 
relationships with predefined -assumed- categories. Very few 
direct  quantitative  careful  annotations  of  key  induction 
dynamics along a complete complex music piece have been 
approached (Krumhansl,  1990).  As a case study of her  key 
finding algorithm,  a Bach's prelude was analysed offline by 
two experts,  which  provided  measure-based  estimations  of 
key  according  to  a  variety  of  musicological  criteria,  and 
rating up to four possible weighted key candidates.  In  most 
studies,  however,  subjects  rated  their  perceptual  relative 
stability of pitch-classes instead  of direct  key strengths  -for 
obvious methodological  reasons-.  Despite  general  warnings 
are posed about this issue (Krumhansl,  1990),  no study has 
covered  the  quantitative  stress  or evaluation  artifacts 
introduced  by the  different  dimensional  projections.  Such 
concerns include the mapping through correlation, which is 
non-metric  in  nature  since  it  does  not  hold  triangular  
inequality. Thus, comparison of two input vectors -the actual 
ratings  and  the  prediction-  is  not  equivalent  to  their 
comparison after mapping, and this has a quantitative impact 
on the evaluation.

In experimental settings capturing continuous ratings, the 
autocorrelation of  the  involved  signals  is  a  very  relevant 
factor  as  well,  introducing  notable  statistical  significance 
problems. However, there is no consensus about its treatment 
in  literature  (Schubert,  2001),  obscuring  the  comparison 
between published models of continuous tonal induction.

III. AIMS
In  this  study,  we show the  impact  that  time-scale  and 

multidimensional  mappings  have  in  the  evaluation  of  a 
simple tonal induction model against ratings collected by the 
concurrent  probe-tone  technique.  We  reanalyse  empirical 
data from a previous experiment (Toiviainen & Krumhansl,  
2003), provided by the second author of the present work, to 
unveil  additional  limitations  of  working  with  preexisting 
-often  preprocessed-  data.  From  the  tonal  perception 
modeling  standpoint,  we  question  about  temporal 
conventions  and  timing  in  tonal  cognition.  From  the 
evaluation  perspective,  we discuss  some  requirements  that 
published  studies  might  consider  to  make  tonal  modeling 
comparison  more  informative.  We  propose  an  interactive 
temporal  multi-scale  tonal  analysis  tool  for  exploring  the 
implications  of  time-scale  and  dimensional  projections  in 
tonal modeling.

IV. METHOD

A. Empirical data gathering

In  (Toiviainen  &  Krumhansl,  2003),  concurrent  probe-
tone tasks were carried out for capturing real-time responses 
to  Bach's  organ  duet  BWV  805  in  A  minor.  Full 
experimental  details can be consulted in the original  article, 
the  main  ones  follow.  Eight  highly  trained  musicians 
participated  in  the  rating  task.  Stimuli  consisted  on  12 
versions  of  the  duet,  each  of  them  including  a  quasi-
continuous probe tone from the  chromatic  scale.  A church 
organ  timbre  was used for rendering  the  resulting  files.  In  
order to prevent blending and peripheral sensory dissonance, 
probe  tones  were  slightly  interrupted  at  the  end  of  each 
measure,  and  there were presented to the opposite ear  than 
the duet through headphones.  Tempo was fixed to 75 bpm. 
After  a  training  session  with  the  interface  using  similar  
stimuli,  subjects were exposed to the 12 versions in random 
order, adjusting a horizontal on-screen slider with the mouse 
according  to the perceived degree of fit  between the music 
and the probe tones. Slider's position was recorded each 200 
ms. Raw data were smoothed by averaging over each 800 ms. 
and  then  averaged  across  subjects.  This  resulted  in  a  12-
dimensional  time  series  of  216  samples,  representing  the 
relative  perceived  stability  of  each  pitch-class  over  time, 
which is the empirical data used in what follows -henceforth, 
ratings-

B. Model of tonal induction

In order to show the evaluation impact of time-scale and 
dimensional mapping, a very simple model of tonal induction 
is implemented, avoiding sophistications that  might  obscure 
the  interpretation.  Most  of the  discussion,  however,  would 
apply similarly for more refined models,  as long as sliding 
windows  or  decay  constants  were  used  for  analysing  the 
stimuli.

The stimulus (free of probe tones) is first converted into a 
chroma representation. In the audio domain, Harmonic Pitch-
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Class Profiles (HPCP) (Gómez, 2006) are computed from the 
signal  every 50 ms.  This  results  on a 12-dimensional  time 
series,  representing  an  estimation of the pitch-class relative 
energies.  In  the  symbolic  domain,  the  preprocessing  just 
removes the octave information  from the MIDI score.  Both 
versions of the stimulus, as used in the original  experiment, 
were provided by the second author of this work.

Then,  a  multi-scale  temporal  segmentation  is  applied  to 
the preprocessed signals. The minimum time-scale is fixed to 
800  ms.,  matching  the  sampling  period  of  the  empirical  
ratings,  and  the  maximum  window  size  fits  the  whole 
musical piece. This range is covered following a logarithmic 
ratio  between  adjacent  scales,  as  a  compromise  between 
number of resolutions and computation cost. This logarithmic 
approach  also contributes to a pleasant  visual  inspection of 
the resulting time vs. time-scale representation. A hop-size of 
800  ms.  is  used  for  all  time-scales,  to  provide  temporal 
alignment  with  the  ratings  time  series.  Placement  of  the 
corresponding  analysis  and  rating  frames  is  done  by 
matching their endings, that is, tonal context is defined from 
past to present, as most models do.  To avoid artifacts in the 
estimation as time-scale increases, only full-sized segments of 
music are analysed, so we discard the beginning of the piece 
accordingly.

A pitch-class profile is then computed for each segment. In 
the  audio  domain,  HPCP  vectors  within  the  frame  are 
averaged and normalized to estimate the relative pitch-class 
energies of the segment.  In  the symbolic domain,  we adapt 
the  method  implemented  in  the  MIDI  Toolbox (Eerola  & 
Toiviainen,  2004) to get the relative duration of each pitch-
class within the frame. Parncutt's durational accent (Parncutt, 
1994)  is  not  used  here  for  two  reasons.  First,  we  are 
interested in applying the closest criteria for both audio and 
MIDI  versions,  but  the  onset  information  reliability  is 
challenged in  the  audio domain.  Second,  the  psychological 
effect of sustained  church  organ  sounds is not  likely to be 
well represented by the predominance of onsets assumed in 
Parncutt's model -e.g. the perceptual presence of a suspended 
note is substantially different when played by a harpsichord 
compared with a pipe organ-. The resulting 12-D time series 
are the output of our simple tonal  induction model, and the 
information to be evaluated against the empirical ratings.

We will discuss two different representations for the tonal-
related time series, as commonly found in literature. For both 
the model and the ratings, we will consider: a) the 12-D time 
series described above; b) the 24-D time series obtained after  
correlation  of the 12-D vectors  with  the  ring-shifted K-K's 
key profiles. Frame-to-frame distance between the model and 
the ratings is computed as one minus the correlation of the 
corresponding  vectors.  The  final  comparison  between  both 
multidimensional time series is considered as the root mean-
square of the frame-to-frame distances along time.

C. Time vs. time-scale representation

Quantification of the overall similarity between both time
series, however, is incomplete for representing the quality of 
a continuous tonal induction model. Aside from the numeric 

result, it is of interest to evaluate which sections of the music 
stimulus are being poorly represented by the model and for 
which ones the algorithm performs the best. An interactive 
visual  inspection  method  is  proposed  as  a  complementary 
qualitative  validation  of  the  model,  respecting  both  the 
impact  of time-scale  and  the  alignment  of  similar  frames 
between  the  ratings  and  the  model  time  series.  This 
visualization is used as an index for exploring the different  
dimensional mappings over time and across time-scales.

The algorithm, based on Sapp's keyscapes (Sapp, 2005), is 
fed with the output of our tonal induction model -a 12-D time 
series  for  each  time-scale  of  analysis-.  Each  frame  is 
projected as a 4-D tonal centroid into K-K's space of inter-
key distances  -coordinates  of  key centres  are  available  in 
(Krumhansl,  1990)-,  using  the  multidimensional  unfolding 
technique  described  in  (Krumhansl  &  Toiviainen,  2003). 
This method can handle some degree of uncertainty, allowing 
centroids to be located between key centres, anywhere in the 
continuous  pitch-space,  according  to  their  relative  key 
strengths.

These 4-D points are then mapped into a single perceptual 
dimension (colour), using the method described in (Martorell 
& Gómez, 2011). In this approach, depicted in Figure 1, a 3-
D  projection  of  the  K-K's  4-D  space  is  geometrically 
inscribed  into  the  CIE  1976  L*a*b*  (known  as  CIELAB) 
colourspace  (CIE,  2004).  This  solution  approaches  three 
desirable properties of the 4-D inter-key space: a) it provides 
a unique colour for each point in the continuous space; b) it 
approximates  perceptual  uniformity,  that  is,  perceptual 
similarity between any pair of colours is correlated with the 
Euclidian distance between their spatial locations; c) it keeps 
both  properties  throughout  the  double  circularity  of  the 
toroidal  space,  providing  smooth  colour  transitions  in  any 
direction.

After  this  process,  the  resulting  coloured  centroids  are 
organized  in  a  2-D image,  representing  the tonal  estimates 
over  time  (x-axis)  at  many  time-scales  (y-axis).  Figure  2 
shows the keyscape computed from the MIDI version of the 
stimulus. The ratings data are processed in the same way as 
the model's output, and the resulting coloured time series is 
shown aligned below the keyscape.

V. RESULTS

A. Qualitative and quantitative analysis

A qualitative visual analysis of Figure 2 shows an overall 
coarse  alignment  between  the  estimates  and  the  ratings 
-similar  colours account  for close distances in  pitch-space-, 
and  the  effect  of time-scale  in  the  model's  output.  In  this 
representation, a notable quantitative stress is introduced by 
the estimates (12-D) mapping  into the 4-D inter-key space, 
and  additional  distortion  appears  as  a  consequence  of  the 
geometrical colouring through a 3-D projection of the pitch-
space.  However,  it  provides  a  visual  intuition  about  the 
matching quality between the involved time-series, as well as 
a  useful  index  for  interactive  exploration  along  time  and 
across time-scales.
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Figure  1.   Colouring  process.  Left:  CIELAB  colourspace.  Centre:  geometrical  inscription  of  pitch-space  in  CIELAB.  Right:  
unfolded coloured pitch-space (colour legend for the keyscape).

Figure 2.  Keyscape (above) aligned with perceptual ratings (below).

Regarding quantitative analysis, we considered time-scales 
ranging  from  800  ms.  -sampling  period  of  the  perceptual 
ratings- to 60 secs. Larger time-scales were discarded for two 
reasons. First, the frequent modulations of the music stimuli 
make very unlikely that subjects were considering such long 
segments in their ratings. Additionally, we want to compare a 
representative amount of music over time and the impact of 
time-scale  over  the  same  stimuli,  but  larger  time-scales 
require discarding quite a notable segment at the beginning.  
Consequently,  we remove the  data  for  the  first  60  seconds 
from  both  the  model  and  the  ratings,  and  the  time-scales 
above  that  value  from  the  model.  As  side  effects  of  this 
decision,  we evaluate  just  the  most  interesting  and  tonally 
rich  excerpt  of the music stimulus,  and  we avoid potential  
response artifacts during the subject's ratings at the beginning  
of the piece.

Figure  3  shows  the  root  mean-square  deviation 
(considering error as the frame-to-frame distances) vs. time-
scale, computed for both the 12-D and 24-D representations 
discussed above.

Figure 3.  Global time-series distance vs. time-scale

Two aspects become evident from the figure. First, the best 
matching is achieved for time-scales of 11.5 s. (12-D) and 15 
s. (24-D). Both curves show a clear  trend with a minimum 
around  that  value,  and  they behave  quite  similarly  across 
time-scales.  Second,  the  24-D  representation  introduces  a 
clear metric artifact in the evaluation, seeming to produce a 
notable better matching.

B. Discussion

The best performing time-scales,  around 13 seconds, are 
significantly  larger  than  the  agreed  conventions  for  short-
term  memory,  usually  in  the  range  of  3-8  secs.  Several  
explanations could account for this result.

First,  we could argue  that  such  large  time-scales can  be 
actually  involved  in  the  processing  of  contextual  tonal 
information,  as  several  hierarchical  tonal  theories  support 
(Lerdahl,  2001).  This  specific  music  stimulus  is  far  more 
complex than simple chord progressions, but it is quite tonal,  
so main tonic references are not difficult to be sustained for 
highly  trained  musicians  -as  were  the  subjects  in  the 
experiment-,  bridging  short tonicizations and  uncertainties 
even in the presence of foreign probe tones. Two aspects of 
the composition might probably contribute to this: the main 
theme  lasts  8  bars,  which  corresponds  to  12.8  secs.  at  75 
bpm. The piece is structured around such duration, not only 
for the thematic expositions but for the progressions as well. 
Moreover, the writing style might  impose a strong thematic 
listening  from the very beginning,  when the main  theme is 
presented in isolation by a single voice.

We should  also  consider  some signal  processing  issues. 
The  available  empirical  ratings  data  were the  result  of,  at  
least, two averaging processes: one intended to minimize the 
erratic fluctuations of the subject's motoric action during the 
task, and an additional inter-subject averaging. The resulting  
signals, although downsampled to reduce its autocorrelation, 
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keep a considerable degree of smoothness.  In  our temporal 
multi-scale model, smoothing is inherent to the use of larger  
time-scales, and this might contribute to better matching with 
the ratings time series.

Regarding metric artifacts, we should notice that the 24-D 
space  used  in  the  evaluation  by key  strengths  is  heavily 
coupled.  In  fact,  the  24-D  vectors  resulting  from  the 
correlation with K-K's profiles are just  extended versions of 
the  input  12-D  vectors,  covering  only  a  reduced  24-D 
subspace.  However,  correlation  between  vectors  after 
mapping  assumes a true space with 24 degrees of freedom, 
which  results  in  a  better  fitting  for  essentially  the  same 
information than  the original  12-D vectors.  Figure 4 shows 
the  evolution  over  time  of the  frame-to-frame  correlations 
computed for the best performing time-scale (according to the 
12-D representation). Here, only the first 15 seconds of music 
were  removed,  to  show a  more  significant  portion  of  the 
music stimulus.

Figure 4.  Frame-to-frame correlation for best time-scale.

The  figure  clearly  shows  that  the  24-D  mapping 
outperforms the  plain  12-D representation  for  virtually all 
frames,  but  this  is  actually  a  mathematical artifact. 
Additionally,  it  is  evident  that  both  metrics  are  not 
equivalent, as can be observed from their temporal evolution. 
This  is  not  surprising,  since  correlation  does  not  hold 
triangular  inequality, so we cannot expect it  to behave as a 
metric in the strict sense.

In any case, the use of K-K's profiles is not justified for the 
stimulus used in the experiment. These profiles are assumed 
to  be  the  categorical  references  respecting  the  perceived 
relative  pitch-class  stability,  but  they  were  derived  from 
subjects'  exposure  to  clearly  unambiguous  tonal  contexts, 
which is not the case of the stimulus used here.  It's  evident 
that  by  using  other  key  profiles,  such  as  Temperley's 
(Temperley, 2001), this kind of evaluation would result in a 
different quantification of similarity. We thus claim that  the 
most appropriate  information to be used in  the quantitative 
evaluation  of tonal  induction  models,  against  ratings  from 
probe-tone methods, are the plain 12-D output vectors from 
the model.

Figure  4  also  shows  the  music  sections  for  which  the 
model  performance  drops  significantly,  which  claims  for 
including  evaluation  over time in  any comparison  between 
models  to  complement  the  whole  piece statistics.  It  might  
happen, for instance, that a given model performs well for the 
complex  music  sections,  but  behaves  poorly for  the  basic 
tonal material.

C. About fixed time-scales in modeling. Future 
scenarios.

The variable performance of the model along time leads to 
questioning the motivations of using fixed time-scales in the 
modeling of  tonal  context  cognition.  Aside  computational 
convenience,  there  are  no supporting  evidence in  literature 
for time-scale to be fixed in  general.  Most discussion about 
time  in  tonality  focuses  on  the  short-term  vs.  long-term 
debate, but fixed time-scales are implemented in virtually all  
cases.  However,  such  temporal  constraint  seems 
counterintuitive  to  music  experience  in  general.  Even 
assuming that tonal context is induced in listeners just from 
the stimuli -which is quite a strong claim in a general sense-,  
we could argue that the time-scales involved in the listeners' 
processing  of tonal  information  would depend on the tonal 
material itself, which can be -and usually is- quite variable as 
music  unfolds  in  time.  This  is  not  in  conflict  with  some 
parsimony  arguments,  which  claim  for  minimizing  the 
temporal memory resources. Such dynamic mechanism might 
actually optimize the use of cognitive buffers,  adjusting the 
required  size  to  the  complexities  of the  information  to  be 
processed.

In our multi-scale evaluation scenario, it is evident that the 
model  can  outperform  respecting  any  single  resolution  by 
using a dynamic time-scale over time. This would be actually 
consistent  with  the  intuitions  of  musical  listening.  Tonal  
cognition  is  unlikely a  passive process  respecting  time,  as 
attention  can  be  driven  towards  short-term  or  long-term 
activity dynamically, depending on both the musical content 
and  the  listener's  background  and  intentions.  Under  this 
hypothetical dynamic listening mode, the time-scale would be 
adjusted  along  time  to  find  an  optimal  path  across  the 
keyscape maximizing the fitting between the model and the 
perceptual ratings.

VI. CONCLUSION
Time-scale  is  a  critical  factor  for  describing  tonality  at 

contextual level, and a main parameter to care about in any 
model  of tonal  cognition.  However,  very few studies  have 
addressed the problem of temporal resolution in a systematic 
way for tonality.  Experimental  methods capturing  real-time 
continuous  ratings  related  to  tonal  induction  provide  a 
potential framework for such research.

This  work  addressed  some  of  the  evaluation  issues  of 
approaching  the  time-scale  problem,  and  it  calls  for  more 
adequate  quantification  methods  beyond  global  statistics. 
Standard  methods  and  metrics  borrowed  from  information 
retrieval  research,  such  as  precision  and  recall  analysis, 
together  with  a  more  transparent  use  of  statistics,  could 
contribute  to  richer  discussions  and  more  informative 
comparison  between  models.  We  also  argue  that  the 
availability of shared datasets of raw perceptual ratings would 
benefit the research on tonal cognition, contributing in terms 
of  modeling  comparison,  multidimensional  analysis 
standardization, and statistical adequateness.
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