
Tap-It: An iOS App for Sensori-Motor Synchronization Experiments

Hyung-Suk Kim,
*1

 Blair Kaneshiro,
*2

 Jonathan Berger
*3

*
Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, U.S.A.

1
hskim08@stanford.edu,

2
blairbo@ccrma.stanford.edu,

3
brg@ccrma.stanford.edu

ABSTRACT

This paper describes Tap-It, an iOS application for sensori-motor

synchronization (SMS) experiments. Tap-It plays an audio file while

simultaneously collecting time-locked tapped responses to the audio.

The main features of Tap-It compared to desktop-based SMS

apparatuses are mobility, high-precision timing, a touchscreen

interface, and online distribution. Tap-It records both the time stamp

of the tap time from the touchscreen, as well as the sound of the

tapping, recorded from the microphone of the device. We provide an

overview of the use of the application, from setting up an experiment

to collecting and analyzing the output data. We analyze the latencies

of both types of output data and assess the errors of each. We also

discuss implications of the application for mobile devices. The

application is available free of charge through the Apple App Store,

and the source code is also readily available.

I. BACKGROUND

Sensorimotor synchronization (SMS) research, especially

research involving tapping tasks, has been a main topic in the

study of rhythm perception, and there is an abundance of

literature in this area (Clarke, 1998; Repp, 2005). An important

component of SMS research is the apparatus used for obtaining

measurements. Various apparatuses and interfaces have been

implemented for SMS experiments over the years, from

horizontal-drum kymographs (Stevens, 1886), to telegraph keys

with a teleprinter machine (Klemmer, 1957; Wing, 1973), to a

microswitch with rolling ball (Keele, 1985). The introduction

of the personal computer reduced the need for customized

hardware and enabled use of various input devices, including

the keyboard, mouse, and various MIDI controllers. Software

packages such as FTAP reduced the overhead of building

customized software. (Finney, 2001)

Despite these advances in measurement devices, most

tapping research must be conducted in laboratory settings due

to equipment constraints. In addition, tapped responses still

suffer from tactile feedback (e.g. key or mouse click) and noise

(e.g. microphone), as well as latency and jitter in the time

stamps. Effects of these factors tend not to be quantified or

reported in publications. Variability of response collection

methods across research groups adversely affects comparability

of data and repeatability of experiments.

With the goal of addressing these limitations, we developed

Tap-It – a free, open-source iOS mobile application that plays

audio files while simultaneously recording time-locked tap

responses using both the touchscreen and the microphone of the

mobile device. We believe this application will be of interest

and relevance to the SMS community as a tool for tap-based

empirical research, and that it can expand the range of possible

experimental paradigms. This paper will focus on Tap-It rather

than the evaluation of existing apparatuses for collecting tapped

responses.

II. DEVELOPMENT

Our goal was to address two principal challenges of existing

tools – timing inaccuracies resulting from interface mechanics,

and the immobility of the collection device. With this in mind

we focused on two goals, high-precision timing and mobility.

For the former we implemented a low latency method that

ensured synchrony between tap-time and the audio stimulus

with a touchscreen interface free of mechanical noise. To the

latter, we added the goal of offering an application that would

be not only mobile, but also freely available and easily

accessible to the research community at large.

A. Mobility

As mentioned in the previous section, response collection

devices historically have not been mobile. Using a mobile

device opens the possibility of tapping experiments while in

motion, e.g. walking or dancing. It also enables experiments

outside of the controlled lab environment.

In recent years, mobile devices have come to provide enough

computational processing power to be used for music synthesis

and interaction (Wang, 2008). They introduce a tangible,

interactive experience compared to that of the traditional

desktop configuration. Current features of mobile devices (e.g.

multi-touch, accelerometer, and gyroscope) enable novel

methods of interaction and allow for collection of new types of

data. Mobility and connectivity of mobile devices also enable

new methods of transmitting, storing, and retrieving data.

In terms of the type of mobile device for application

development, we chose iOS devices due to low audio latency,

abundance of devices (e.g., iPhones and iPod Touches), and the

ease of distribution of the application via the Apple App Store.

B. High-Precision Timing

In order to achieve high-precision timing, Tap-It was

programmed using the MoMu Toolkit (Bryan, 2010) and

STK:MoMu release for audio playback. Tap-It utilizes the

audio playback timer, not the device (CPU) clock, for time

stamps to ensure strict synchronization of tap times with the

audio playback. Performance analysis is presented in section IV

(Data Analysis).

C. Flat Tapping Surface

Collecting tapped responses using mechanical devices such

as the computer keyboard or mouse introduces mechanical and

tactile latencies, which may adversely affect the behaviour of

the experiment participant. The touchscreen of the iOS device,

being flat, removes these latencies and feedback.

D. Distribution and Broad-Range Data Collection

iOS devices have come to be ubiquitous in many places.

Thus, the ease and accessibility of downloading and installing

528

applications to such devices facilitates experiments that can

now be run remotely and over a broad geographical range.

III. SPECIFICATIONS

We briefly describe the procedure for downloading the

application, and then setting up and executing an experiment

using Tap-It. Following this, we describe the format of the

response data. An in-depth description of the following sections

can be found on the Tap-It webpage.
1

A. Terminology

We will be using the following terms. By task, we mean a

tapping task with one full audio file playback. A session is a

series of tasks, usually by one subject. An experiment is a series

of sessions using the same set of audio files with the same setup

file (this point is explained in greater detail in the following

subsection). An experimenter is the person setting up the

experiment. A subject is the person who performs the tasks and

whose tapped responses are being collected.

B. Description of Use

Tap-It can be downloaded and installed free of charge to an

iOS device via Apple App Store.
2

 Figure 1 shows the

informational screen of the application.

Figure 1. Information screen of Tap-It in the Apple App Store.

1) Setting up an experiment. In order to set up an experiment,

the following files are required:

 Audio files for testing (.wav format)

 Task description file (trackList.xml)

Currently, audio files must be in .wav format to be loaded by the

experimenter. The tracklist.xml file contains the names of

all .wav files to be presented in the experiment. This document

is simple to edit and we provide a template as part of the online

1
 URL: https://ccrma.stanford.edu/~hskim08/TapIt/

2
 URL: http://itunes.apple.com/mu/app/tap-it/id456418861?mt=8 or search

for “Soundscape Studio”.

documentation.
3
 Figure 2 shows the template trackList.xml file,

which is initialized with a list to play .wav files titled

“theFirstFile.wav” and “theSecondFile.wav”.

Figure 2. Example trackList.xml file. More files can be added by

adding additional <filename> </filename> lines and enclosing the

file name between the two tags.

Experiment files are uploaded to the mobile device using the

iTunes Documents browser. The application will deliver an

error message if the files are not configured correctly or cannot

be loaded. By default, audio files will be presented in the order

they are listed in the .xml file. If randomization is desired, the

application also includes a setting for randomizing track order,

which can be accessed in the Tap-It section of Settings menu in

the iOS device.

2) Running an experiment. Once the experiment files have

been successfully uploaded to the device, the application is

ready to be used for data collection. The interface is shown in

Figure 3.

Figure 3. Main interface of Tap-It. The user may tap anywhere in

the main white box. Touching the “Enter User ID” brings up a

pop-up window for entering the ID; the task bar at the bottom is

used to play audio files, and to move backward or forward

through the track list.

The experimenter initiates an experiment session by entering

a numeric user ID and pressing the “Done” button that appears

in the pop-up window. Following this, the application will cycle

through the audio files listed in the xml playlist. For each audio

file, the subject presses the play button in the bottom task bar to

begin audio playback and start recording the taps. At the end of

each audio track, the application will automatically load the

next audio file, waiting for the subject to press play to continue.

3
 https://ccrma.stanford.edu/~hskim08/TapIt/user.html

529

C. Data Description

Tap-It creates two files for every audio file that is played

through the device:

 [userID]_[track#].txt

 [userID]_[track#].wav

The .txt file contains the time stamps created by tapping the

screen, with the time stamps in seconds since the beginning of

the audio playback. The .wav file is an audio file of the

microphone recording. There are pros and cons to each format.

The .txt file is easy to read into any software or script, and is

unlikely to contain false inputs. However, due to the limitations

of the device, there is a time latency of approximately 15ms

from a tap on the screen to the actual time stamp (see next

section).

To compensate for the latency, Tap-It also saves the

microphone recording. This recording is strictly synchronized

to the playback audio, and the taps will be exact. However, due

to the fact that this is a direct microphone input, the signal is

prone to ambient noise, and the microphone sensitivity varies

from device to device. If this is the preferred data format,

subjects should wear headphones so that the sound of the audio

file being played out of the device does not overwhelm the

sound of the taps. In addition, silent taps may not be easy to pick

up through the built-in microphone.

In the current implementation of Tap-It, the .txt file is created

only when a task ends, i.e. the current audio finishes playing.

Therefore, the task must be completed in order for the time

stamp file to be created. In contrast, the tap audio recordings are

saved as the task is being performed.

In addition to the files created for each audio file that is

played, the following file is created for each user ID:

 [userID]_play_order.txt

This .txt file contains the actual play order for the experiment

session, and is particularly useful when the randomization

setting is enabled.

All data files are saved in the “data” folder within the Tap-It

Documents, visible in the iTunes Apps tab. If multiple sessions

are conducted under the same user ID, existing versions of the

output files will be overwritten by the most recent version.

IV. DATA ANALYSIS

In this section we provide an overview of methods to analyse

the data files and use these methods to assess the timing

precision of Tap-It. Our analyses are performed using

MATLAB.

A. Reading Data Files

As shown in Figure 4, the time stamps in the .txt files are

six-digit decimal numbers separated with line breaks. This file

format is easy to load into software programs. Extracting the

time stamps from the output .wav files, however, is not so trivial,

as the tap times must be inferred by finding peaks in the audio.

Example MATLAB files for loading the output data files from

experiment sessions and analysing the results are provided in

the Data Analysis section of the online Tap-It documentation.
4

Figures 5 and 6 were generated using those files.

4
 https://ccrma.stanford.edu/~hskim08/TapIt/data.html

0.835918
1.114558
1.578957
2.043356
2.693515
3.157914
3.715193

Figure 4. Example of time stamps in .txt files. Time stamps are

recorded in seconds.

B. Latency Analysis

We define latency as the time from the actual tap of the

device to the time it is observed and recorded. Latency of a tap

apparatus can be caused at any point of the response collection

process. For the time stamps in the .txt file, possible sources of

latency are, the time the device takes to recognize the tap event

from the touchscreen, the time it takes for the event to be

notified to the application, and the time for the app to process

the event. For the tap microphone recording, the main source of

latency is a constant audio buffer swapping.

Another artefact closely related to latency is jitter. Jitter is

caused by the variation of latency. Since any latency for audio

will be related to buffer swapping, there is a negligible amount

of jitter (< 1ms) for the microphone recording. However, the

latency of the time stamps varies.

We have already mentioned that the touchscreen, compared

to a keyboard or mouse button, has no moving parts, and thus

prevents tactile feedback for the user while tapping.

In Tap-It, the audio input and output are handled on the same

device, and in the same callback function. This reduces timing

jitter in the difference between the microphone signal and the

playback audio. Thus we view the microphone signal as a more

accurate representation of the actual tap event, and treat it as the

ground truth of the tap time, keeping in mind the limitation of

the efficacy of the peak-finding algorithm.

We assessed performance of Tap-It timing using tap data

collected with both an iPhone 3GS and an iPod Touch 4G. Tap

onset times extracted from the microphone input were

compared to the time stamps in the .txt file. Latency was

measured by comparing the peaks in the microphone recording

(.wav) and the time stamps (.txt) generated from the same task

(Figure 5). The tap-to-time stamp latency was observed to be

approximately 15 ms, with a standard deviation of

approximately 5 ms, depending upon the load and/or state of the

device (Figure 6) Differences between devices were negligible.

Figure 5. Plot of peaks detected from the microphone input and

the time stamp data. Detected peaks from the .wav file are shown

in black, and the time stamps from the .txt file are shown in red.

530

Figure 6. Histogram of error between the time stamps and the

detected peaks from the audio data. The mean of the errors is

15.56ms with a standard deviation of 4.74ms. (N = 155)

V. IMPLICATIONS

Tap-It is ready for use in experiments. We now identify the

advantages and limitations of the application in its current state.

A. Advantages

The mobility of the apparatus makes possible a wide range of

experiment settings for studying sensorimotor responses, on

two levels. On the first level, experiments can now be

conducted outside of the laboratory setting, and tapped

responses can be collected while the participant is engaged in

other activities such as walking or dancing.

On a broader level, the fact that the application can be

installed on any number of iOS devices can enables advantages

ranging from faster collection of data in the same location, to

the ability for data to be collected across great geographical

distances, and for these data to be easily comparable. In

addition, performing data collection using this application

implies increased reproducibility of results. This increased

scope of distribution and standardization also has implications

toward crowdsourcing.

B. Limitations

We acknowledge limitations to the application in its current

state. File management currently does not leverage the

networked capability of iOS devices, and must be performed

manually by physically connecting the device to a computer.

Experiment files must be uploaded to, and downloaded from,

the device using iTunes (i.e. they cannot currently be

downloaded directly to the device or uploaded from the device

to a server). Data analysis must additionally be performed

offline. At this time, audio files must be in .wav format, and the

application is developed only for iOS devices.

As mentioned previously, participants must wear

headphones if the experimenter wishes to utilize the

microphone recording of the tap times. Additionally, in this

case the participant must tap with enough force that the sound of

the tap is loud enough to be captured by the microphone. This

may not be an easy or ideal activity for all tapping tasks.

Finally, the features we chose to implement in the application

prevented development of other features. The flat touchscreen

precludes any tactile feedback from tapping. Audio feedback

(such as a mouse click) is also eliminated, aside from the sound

of the tap on the touchscreen.

Improved file management, support for additional audio file

formats, and optional visual and audio feedback may be

implemented in a future version of the application.

VI. CONCLUSION

We identified a need, in SMS research, for a data-collection

apparatus that embodied features of mobility, high-precision

timing, flat tapping surface, and easy distribution for

broad-range data collection. We implemented all of these

functionalities in Tap-It, a freely available application designed

for use in iOS devices. The application is available through the

Apple App Store and is ready for use in tapping experiment.

We have discussed the specifications of the application as

well as its use in setting up experiments, running experiments,

and analysing the collected data. Timing performance issues of

latency and jitter have been assessed. We have identified

current advantages and limitations of using the device.

REFERENCES

Bryan, N. J., Herrera, J., Oh, J., & Wang, G. (2010). MoMu: A mobile

music toolkit. In K. Beilharz, A. Johnston, S. Ferguson, & A.

Y.-C. Chen (Eds.), Proceedings of the 2010 Conference on New

Interfaces for Musical Expression (NIME 2010). Sydney:

University of Technology Sydney.

Clarke, E. F. (1998). Rhythm and timing in music. In D. Deutsch (Ed.),

The Psychology of Music (2nd ed.). San Diego: Academic Press.

Finney, S. A. (2001). FTAP: A Linux-based program for tapping and

music experiments. Behavior Research Methods, Instruments,

and Computers, 33, 65-72.

Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do

perception and motor production share common timing

mechanisms: A correctional analysis. Acta Psychologica, 60,

173-191.

Klemmer, E. T. (1957). Rhythmic disturbances in a simple

visual-motor task. American Journal of Psychology, 70, 56-63.

Repp, B. H. (2005). Sensorimotor synchronization: A review of the

tapping literature. Psychonomic Bulletin & Review, 12, 969-992.

Stevens, L. T. (1886). On the time-sense. Mind, 11, 393-404.

Wang, G., Essl, G., & Penttinen, H. (2008). Do mobile phones dream

of electric orchestras? In Proceedings of the International

Computer Music Conference (ICMC). Belfast.

Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the

timing of discrete motor responses. Perception & Psychophysics,

14, 5-12.

531

