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ABSTRACT 

Background 

Recent theories propose that predictive mechanisms in the 

human brain enhance survival (Bar, 2007). The predictive 

coding theory explains how mental representations are 

continuously optimised through monitoring of prediction errors 

(Friston, 2005). Statistical learning associated with this process 

has been thoroughly demonstrated in the visual (Fiser & Aslin, 

2002), somatosensory (Conway & Christensen, 2005) and 

auditory domains; including sequences of syllables (Saffran, 

2003), timbres (Tillmann & McAdams, 2004) and pitches (Loui, 

Wessel, & Hudson Kam, 2010). This has led researchers to 

consider implicit, statistical learning a domain-general 

mechanism (Perruchet & Pacton, 2006). 

In musical contexts, short-term acquisition of statistical 

regularities is enhanced by the extent of exposure (Jonaitis & 

Saffran, 2009) and deteriorated by grammatical complexity 

(Rohrmeier & Cross, 2009). Moreover, melodic pitch 

expectations have been shown to reflect probabilities of the 

general tonal repertoire internalised through long-term 

exposure (Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 

2010). The latter study used a computational model, based on 

n-gram methods, acquiring knowledge through unsupervised 

learning of a large corpus of music (Pearce, 2005). 

Previous studies have solely examined the expectedness of a 

single continuation at a time (often retrospectively, after it has 

occurred). The cognitive processes of generating expectations 

before a forthcoming event–and the predictive uncertainty that 

this entails–thus remain unexplored. Probe-tone studies 

collecting data from multiple continuations (e.g. Cuddy & 

Lunney) have aimed to test theories of melodic continuation 

(e.g. Narmour, 1990) and have thus not addressed predictive 

uncertainty about the next event before it arrives. 

The information-theoretic concept of entropy quantifies the 

uncertainty involved in predicting values of a random variable, 

X, by taking the average information content across the discrete 

set of possible outcomes weighted according to probabilities 

(Shannon, 1948): 

 
Hitherto, musical applications of information theory have 

primarily used entropy as a way of distinguishing musical styles 

(Margulis & Beatty, 2008) or for information-retrieval 

purposes like melody identification (Duane, 2010), thus 

ignoring its psychological potential. 

Aims 

The present study aimed to assess Shannon entropy as a 

model of perceptual uncertainty in melodic pitch expectation. 

Four hypotheses were tested: 

1) High-entropy contexts will elicit greater uncertainty 

than low-entropy contexts. 

2) Musicians will generally show less uncertainty than 

non-musicians due to a more optimised internal 

cognitive model of probabilistic structure in melodies. 

3) An entropy-by-expertise interaction for unexpectedness 

ratings will result from the fact that domain-specific 

training is more advantageous in low-entropy contexts. 

4) Earlier findings of positive correlation between 

perceived unexpectedness and information content 

(Pearce et al., 2010) will be replicated. 

Method 

Seventeen musicians and 17 non-musicians listened to 24 

melodic contexts, presented in random order, and provided 

ratings (9-point scale) on perceived uncertainty (explicit 

uncertainty). Each melody was subsequently presented a 

further nine times each time followed by one of nine 

chromatically distributed probe tones centred on the median 

pitch. All probe-tone stimuli were presented in random order, 

and expectedness ratings (9-point scale) were collected (cf. 

Krumhansl & Shepard, 1979). Entropy computed from 

normalised expectedness distributions resulted in another 

measure of uncertainty (implicit uncertainty).  

Complex and simple stimuli were selected from Schubert 

songs and isochronous English hymns, respectively, and 

assigned to low- and high-entropy conditions according to 

predictions of an unsupervised, variable-order Markov Model 

(Pearce, 2005). A modelling viewpoint linking pitch interval 

and scale degree was used. Musical key was estimated using 

Temperley’s (1999) optimised key-finding algorithm. 

Results 

Implicit uncertainty (Fig. 1), explicit uncertainty (Fig. 2) and 

unexpectedness (Fig. 3) data were subjected to 2x2x2 

ANOVAs with complexity and entropy as within- and expertise 

as between-participant factors. 

High-entropy contexts produced significantly greater 

implicit uncertainty for both complex and simple stimuli, F(1,  

22) = 42.52, p < .01, and greater explicit uncertainty for simple 

stimuli, F(1, 30) = 6.23, p = .02. Averaged across participants, 

implicit uncertainty correlated with entropy, rs = .49, p = .02, 

but explicit uncertainty did not, rs = .20, p = .35. 
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Musicians experienced less implicit uncertainty for both 

complexity levels, F(1, 22) = 5.49, p = .03, and less explicit 

uncertainty for simple stimuli, F(1, 30) = 4.00, p = .05. 

Significant entropy-by-expertise, F(1,  22) = 4.76, p = .04, and 

complexity-by-entropy, F(1,  22) = 4.95, p = .04, interactions 

were found for implicit uncertainty. Moreover, complex stimuli 

produced higher explicit uncertainty, F(1, 30) = 11.44, p < .01, 

and an expertise-by-complexity interaction was found, F(1, 30) 

= 4.09, p = .04. 

Unexpectedness ratings increased with information content, 

rs = .70, p < .01. This effect was strongest in musicians, t(215) = 

3.47, p < .01, and increased with musical training, R
2
 = .54, R

2
adj. 

= .52, F(1, 32) = 37.06, p < .01. Additionally, the hypothesised 

entropy-by-expertise interaction was found for unexpectedness 

data, F(1, 28) = 15.82, p < .01. 

 

Conclusions 

Our results demonstrate for the first time that perceptual 

uncertainty reflects the Shannon entropy of an underlying 

process of probabilistic prediction. The strength of this effect is 

enhanced by: (a) simplicity in sensory input, (b) 

domain-relevant training, and (c) implicitness of uncertainty 

assessment.  

Moreover, domain-relevant training leads to an increasingly 

accurate cognitive model of probabilistic structure. Without 

training, the default internal model appears to make predictions 

with relatively high entropy. Musical training, therefore, has the 

highest impact when sensory input generates probability 

distributions with relatively low entropy. 

These findings are consistent with a statistical learning 

account of auditory cognition (Cristià, McGuire, Seidl, & 

Francis, 2011) as well as with the predictive coding theory 

(Friston, 2005). 
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Figure 1. Mean implicit uncertainty.     Figure 2. Mean explicit uncertainty.      Figure 3. Mean unexpectedness. 
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