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ABSTRACT 
Listening to music makes us move in various ways. Several factors 
can affect the characteristics of these movements, including 
individual factors, musical features, or perceived emotional content 
of music. Music is based on regular and repetitive temporal patterns 
that give rise to a percept of pulse. From these basic metrical 
structures more complex temporal structures emerge, such as rhythm. 
It has been suggested that certain rhythmic features can induce 
movement in humans. Rhythmic structures vary in their degree of 
complexity and regularity, and one could expect that this variation 
influences movement patterns – for instance, when moving to 
rhythmically more complex music, the movements may also be more 
irregular. To investigating this relationship, sixty participants were 
presented with 30 musical stimuli representing different genres of 
popular music. All stimuli were 30 seconds long, non-vocal, and 
differed in their rhythmic complexity. Optical motion capture was 
used to record participants’ movements. Two movement features 
were extracted from the data: Spatial Regularity and Temporal 
Regularity. Additionally, 12 beat-related musical features were 
extracted from the music stimuli. A subsequent correlational analysis 
revealed that beat-related musical features influenced the regularity 
of music-induced movement. In particular, a clear pulse and high 
percussiveness resulted in small spatial variation of participants’ 
movements, whereas an unclear pulse and low percussiveness led to 
greater spatial variation of their movements. Additionally, temporal 
regularity was positively correlated to flux in the low frequencies 
(e.g., kick drum, bass guitar) and pulse clarity, suggesting that strong 
rhythmic components and a clear pulse encourage temporal 
regularity. 

I. INTRODUCTION 
Music makes us move. When we listen to music, we often 

move our body along with the music in a spontaneous fashion. 
Keller and Rieger (2009), for example, stated that simply 
listening to music can induce movement, and in a self-report 
study conducted by Lesaffre et al. (2008), most participants 
reported moving when listening to music. In general, people 
tend to move to music in an organized way, for example by 
mimicking instrumentalists’ gestures or rhythmically 
synchronizing with the pulse of the music by tapping their 
foot, nodding their head, or moving their whole body in 
various manners (Leman & Godøy, 2010). Moreover, Leman 
(2007) suggests, “Spontaneous movements [to music] may be 
closely related to predictions of local bursts of energy in the 
musical audio stream, in particular to the beat and the rhythm 
patterns”. Such utilization of the body is the core concept of 
embodied cognition, which claims that the body is involved in 
or even required for cognitive processes (e.g., Lakoff & 
Johnson, 1980/1999, or Varela, Thompson, & Rosch, 1991). 
Human cognition is thus highly influenced by the interaction 
between mind/brain, sensorimotor capabilities, body, and 
environment. Following this, we can approach music (or 

musical involvement) by linking our perception of it to our 
body movement (Leman, 2007). One could postulate that our 
bodily movements reflect, imitate, help to parse, or support 
the understanding of the content of music. Leman suggests 
that corporeal articulations could be influenced by three 
(co-existing) components or concepts: “Synchronization”, 
“Embodied Attuning”, and “Empathy”, which differ in the 
degree of musical involvement and the kind of 
action-perception couplings. “Synchronization” forms the 
fundamental component, as synchronizing to a beat is easy 
and spontaneous. The beat serves as the basic musical element, 
from which more complex structures emerge. Leman 
furthermore suggests the term ‘inductive resonance’, which 
refers to more active control, imitation, and prediction of 
movements to display beat-related features in the music (the 
opposite of passively tapping to a beat) as the first step in 
engaging with the music. The second component, “Embodied 
Attuning”, concerns the linkage of body movement to musical 
features more complex than the basic beat, such as melody, 
harmony, rhythm, tonality, or timbre. Following this idea, 
movement could be used to reflect, imitate, and navigate 
within the musical structure in order to understand it. Finally, 
“Empathy” is seen as the component that links musical 
features to expressivity and emotions. In other words, the 
listener feels and identifies with the emotions expressed in the 
music and imitates and reflects them by using body 
movement. 

A large body of research has been conducted on listeners' 
abilities to synchronize to musical (or beat) stimuli through 
finger or foot tapping (for a review see Repp, 2005). However, 
less research has been conducted on music-induced 
whole-body movement. Zentner and Eerola (2010), 
nevertheless, investigated infants' ability to bodily 
synchronize with musical stimuli, finding that infants showed 
more rhythmic movement to music and metrical stimuli than 
to speech suggesting a predisposition for rhythmic movement 
to music and other metrical regular sounds. Eerola, Luck, and 
Toiviainen (2006) studied toddlers’ corporeal synchronization 
to music, finding three main periodic movement types being 
at times synchronized with pulse of the music. Toiviainen, 
Luck, and Thompson (2010) investigated how music-induced 
movement exhibited pulsations on different metrical levels, 
and showed that eigenmovements of different body parts were 
synchronized with different metric levels of the stimulus. 
Luck, Saarikallio, Burger, Thompson, and Toiviainen (2010) 
studied the influence of individual factors such as personality 
traits and preference on musically induced movements of 
laypersons’ dancing, finding several relationships between 
personality traits and movement characteristics. Furthermore, 
music-intrinsic features, such as beat strength and pulse 
clarity (Burger, Thompson, Saarikallio, Luck, & Toiviainen, 
2010; Van Dyck et al., 2010) and emotional characteristics in 
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music (Burger, Saarikallio, Luck, Thompson, & Toiviainen, 
2012) have been found to influence music-induced movement 
in general. 

Rhythmic music is based on beats, which can be physically 
characterized as distinct energy bursts in time. If such beats 
occur as regular and repetitive temporal patterns, they give 
rise to a percept of pulse. Beat and pulse structures can be 
regarded as the basic metrical structure in music from which 
more complex temporal structures, such as rhythm, emerge. It 
has been suggested that certain rhythmic features, such as 
event density or beat salience, have an effect on inducing 
movement in humans (Madison, Gouyon, Ullén, & Hörnström, 
2011). Rhythmic structures can vary in their degree of 
regularity, which, combined with the notion of movement as 
imitating and reflecting musical structure, could lead to the 
assumption that the degree of irregularity of beat and 
rhythmic structures in music has an influence on the regularity 
of the resulting movement patterns; for instance, when 
moving to rhythmically more irregular music, the movements 
may also be more irregular. 

This study investigates relationships between beat- and 
rhythm-related musical features, such as pulse clarity, spectral 
fluctuation, and note attack characteristics on one hand, and 
movement features characterizing regularity on the other. Two 
movement features were selected that relate to different 
aspects of regularity. Spatial Regularity is based on intrinsic 
dimensionality – in particular, the higher the dimensionality, 
the more irregular the movement. Temporal Regularity relates 
to regular/periodic movement on different metrical levels. 
These two features were computationally extracted from 
movement data acquired using a high-resolution optical 
motion tracking system. We predicted that these features 
would be influenced by the beat and rhythmic structure of the 
music. In particular, we expected that a clear pulse and strong 
beat would encourage participants to move in a regular 
fashion.  

II. METHOD 

A. Participants 
A total of 60 participants took part in the experiment (43 

females; average age = 24; SD of age = 3.3). Six participants 
had received formal music education, while four participants 
had a formal background in dance tuition. Participation was 
rewarded with a movie ticket. 

B. Stimuli 
Participants were presented with 30 randomly ordered 

musical stimuli of different popular music genres including 
Techno, Pop, Rock, Latin, Funk, and Jazz. All stimuli were 30 
seconds long, non-vocal, and in 4/4 time, but differed in their 
rhythmic complexity, pulse clarity, and tempo. 

C. Apparatus 
Participants’ movements were recorded using an 

eight-camera optical motion capture system (Qualisys 
ProReflex) tracking, at a frame rate of 120 Hz, the 
three-dimensional positions of 28 reflective markers attached 
to each participant. The locations of the markers can be seen 
in Figure 1a and can be described as follows (L = left, R = 
right, F = front, B = back): 1: LF head; 2: RF head; 3: LB 

head; 4: RB head; 5: L shoulder; 6: R shoulder; 7: sternum; 8: 
spine (T5); 9: LF hip; 10: RF hip; 11: LB hip; 12: RB hip; 13: 
L elbow; 14: R elbow; 15: L wrist/radius; 16: L wrist/ulna; 17: 
R wrist/radius; 18: R wrist/ulna; 19: L middle finger; 20: R 
middle finger; 21: L knee; 22: R knee; 23: L ankle; 24: R 
ankle; 25: L heel; 26: R heel; 27: L big toe; 28: R big toe. The 
musical stimuli were played back via a pair of Genelec 8030A 
loudspeakers using a Max/MSP patch running on an Apple 
computer.  

 

 

D. Procedure 
Participants were recorded individually and were asked to 

move to the presented stimuli in a way that felt natural. 
Additionally, they were encouraged to dance if they wanted to, 
but were requested to remain in the center of the capture space 
indicated by a 115 x 200 cm carpet. 

E. Movement Feature Extraction 
In order to extract various kinematic features, the 

MATLAB Motion Capture (MoCap) Toolbox (Toiviainen & 
Burger, 2011) was used to first trim the data to the duration of 
each stimulus and, following this, to derive a set of 20 
secondary markers – subsequently referred to as joints – from 
the original 28 markers. The locations of these 20 joints are 
depicted in Figure 1b. The locations of joints C, D, E, G, H, I, 
M, N, P, Q, R, and T are identical to the locations of one of 
the original markers, while the locations of the remaining 
joints were obtained by averaging the locations of two or 
more markers. Subsequently, the data were transformed into a 
local coordinate system, in which joint A was located at the 
origin, and segment BF had zero azimuth. Two 
regularity-related movement features, Spatial Regularity and 
Temporal Regularity, were then extracted from these data. 

1)  Spatial Regularity. This feature was based on the 
intrinsic dimensionality of the movement according to the 
Maximum Likelihood Estimator (Levina & Bickel, 2004). 
The intrinsic dimensionality of a high-dimensional data set 
describes how many variables are needed to represent the set 
without significant information loss. Thus, the more intrinsic 
dimensions needed to explain the movement, the more 
irregular and complex the movement is. A graphical 
description based on Principal Component Analysis to obtain 
the signal’s dimensions is displayed in Figure 2. 

Figure 1. (a) Anterior view of the location of the markers 
attached to the participants’ bodies; (b) Anterior view of the 
locations of the secondary markers/joints used in the analysis. 
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Figure 2. Intrinsic dimensionality of movement illustrated by 
displaying the projections of the first five Principal Components 
of (a) high-dimensional movement and (b) low-dimensional 
movement. The extreme deflections of the projections are plotted 
from the front, from the side, and from the top. (a) High intrinsic 
dimensionality, manifested as significant movement in all five PC 
projections; (b) Low intrinsic dimensionality, manifested as 
significant movement in only the lower PC projections. 

2)  Temporal Regularity. This feature relates to the 
presence of regular movement on different metrical levels 
simultaneously, calculated by filtering the position data (all 
joints) using 80 bandpass filters in a frequency range between 
0 and 4 Hz with each filter having a bandwidth of 0.1 Hz and 
an overlap of 0.05 Hz with the adjacent filters. For each of the 
80 channels, the temporal average of kinetic energy was 
estimated using body-segment modeling (see Toiviainen et al., 
2010) and then merged into a spectral representation. 
Following this, each spectrum was autocorrelated, and the 
vertical differences of the autocorrelation function summed. 
The higher this sum, the more regular movement there was on 

different metrical levels. The procedure is depicted in Figure 
3. 

Figure 3. High vs. low metrical regularity: High metrical 
regularity indicated by several high, clear, and regular peaks in 
both the kinetic energy spectrum (a) and the corresponding 
autocorrelation function (b). The peaks correspond to the 
metrical levels existing in the underlying stimuli. In contrast, low 
metrical regularity indicated by an irregular kinetic energy 
spectrum (c) and a flat autocorrelation spectrum (d). 

Subsequently, the values of each variable were averaged 
across participants for each stimulus presentation. This 
yielded a total of two statistical movement features for each of 
the 30 stimuli. 

F. Musical Feature Extraction 
In addition to the movement features, 12 beat- and 

rhythm-related features were extracted from the music stimuli 
using the MATLAB MIRToolbox (Lartillot & Toiviainen, 
2007), resulting in one averaged value per stimulus: 

1)  Pulse Clarity. This feature indicates the strength of 
rhythmic periodicities and pulses in the signal, estimated by 
the relative Shannon entropy of the fluctuation spectrum 
(Pampalk, Rauber, & Merkl, 2002). Entropy is a measure of 
the degree of peakiness of the spectrum. 

2)  Percussiveness. This feature is defined as the average 
value of the slope of the amplitude envelope at the note onsets. 
The steeper the slope, the more percussive the sound. 

3)  Sub-band Fluxes (10 features). These features indicate 
the extend to which the spectrum changes over time. The 
stimulus is divided into 10 frequency bands, each band 
containing one octave in the range of 0 to 22050 Hz. The 
Sub-Band Flux is then calculated for each of these ten bands 
separately by calculating the average of the Euclidean 
distances of the spectra for each two consecutive frames of the 
signal (Alluri & Toiviainen, 2010). Two spectrograms of 
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sub-band no. 2 (50-100 Hz) are displayed in Figure 4 to show 
the difference between high and low sub-band flux.  

Figure 4. Sub-band spectrograms (sec. 10 to 20) of the two 
stimuli with the highest (left) and lowest (right) value for 
Spectral Flux of Sub-Band No. 2. The darker the area the more 
energy is present in the stimulus at that time and frequency. 
Thus, the left stimulus contains more temporal change in the 
frequency range between 50 and 100 Hz than the right one. 

III. RESULTS 
In order to investigate influences of beat-related musical 

features on regularity-related aspects of music-induced 
movement, we correlated the two movement features with the 
12 musical features. The results are displayed in Table 1. 
 

Table 1: Results of the correlation between the regularity-related 
movement features and the beat-related musical features. 

 
We found that both Regularity features correlated 

significantly with Pulse Clarity (Spatial Regularity: r(30)=.50, 
p<.01, Temporal Regularity: r(30)=.57, p<.001) and 
Percussiveness (Spatial Regularity: r(30)=.48, p<.01, 
Temporal Regularity: r(30)=.50, p<.01). Temporal Regularity 
also correlated significantly with Spectral Flux of the first 
three sub-bands (0-50 Hz: r(30)=.63, p<.001 / 50-100 Hz: 
r(30)=.72, p<.001 / 100-200 Hz: r(30)=.64, p<.001) and the 
9th sub-band (6400-12800 Hz) (r(30)=.47, p<.01). Thus, high 
pulse clarity and percussiveness in the music were related to 
movements of low intrinsic dimensionality suggesting that 
there is small spatial variation indicating low-dimensional 
movement. Stimuli with unclear pulse and low percussiveness, 
on the other hand, were connected to greater spatial variation 
indicating higher dimensional movement. Furthermore, high 
pulse clarity, strong spectral flux in the frequency ranges 
below 200 Hz and between 6400 and 12800 Hz, and high 
percussiveness resulted in temporally regular movements 
suggesting that participants moved periodically in relation to 

several metrical levels if the spectral flux of the low and high 
frequency bands, percussiveness, and pulse clarity were high. 
If these musical features were weakly present in the stimuli, 
participants moved less periodically to different metrical 
levels.  

IV. DISCUSSION 
The results of this study suggest that beat-related musical 

features influence the regularity of music-induced movement. 
Changes in both Pulse Clarity and Percussiveness were found 
to affect both Spatial and Temporal Regularity. Clear pulse 
and high percussiveness resulted in movements of low 
intrinsic dimensionality, suggesting that there is little spatial 
variation in the movements. Thus, low-dimensional 
movements were used to reflect the characteristics of the 
music. Stimuli with an unclear pulse and low percussiveness 
on the other hand seemed to encourage people to use more 
spatial variation and thus high-dimensional movement. The 
participants might have used such high-dimensional 
movements to parse and understand the unclear beat of the 
music, as if they were searching for the beat. 

Additionally, Temporal Regularity was related to Flux in 
the low and high frequencies, Percussiveness, and Pulse 
Clarity, suggesting that participants moved periodically in 
relation to several metrical levels if the stimuli contained such 
musical characteristics. If these musical features were weakly 
present, participants moved less periodically in relation to 
different metrical levels. Strong flux of the low frequency 
bands was mostly related to presence of the kick drum and 
bass guitar, whereas flux of the high frequency band was 
mostly associated with the presence of hi-hat or cymbals, 
since such instruments are dominant in the respective 
frequency regions. Thus, our results suggest that a strong and 
regularly fluctuating rhythm section encouraged the 
participants to move in a temporally regular fashion with 
motions periodic to different metrical levels, whereas more 
complex, irregular rhythmic structures resulted in temporally 
less regular movement.  

The results could provide support for notions of embodied 
music cognition (Leman, 2007). Both regularity features can 
be related to actively controlling, imitating, and predicting the 
music regarding beat-related features (‘inductive resonance’) 
and for movement-based ‘navigation’ within the music as a 
behavior rather used with higher-level musical structures, 
such as rhythmic components (‘embodied attuning’). 
Following the concept of ‘inductive resonance’, if the music 
has a clearly perceivable and strong beat, it might have a 
“resonating” effect that results in temporally and spatially 
regular movements, imitating the clear beat structure. 
However, if the music has a less clear beat structure, the more 
fuzzy/blurry resonance of such music rather induces 
temporally and spatially irregular movement, as if the 
participants were searching for the beat. Moreover, the results 
could serve as an example for the concept of ‘embodied 
attuning’ – movement-based navigation through the rhythmic 
structures of the stimuli. It could be suggested that 
participants attune to strong spectral fluctuation in low and 
high frequency ranges by imitating it with temporally regular 
movement periodic to different metrical levels, whereas 
participants attune to less salient rhythmic structures with 
temporally less regular movement not being periodic to the 

 Spatial Reg. Temporal Reg. 
Pulse Clarity .50** .57*** 
Percussiveness .48** .50** 
Sub-band No. 1 Flux .01 .63*** 
Sub-band No. 2 Flux .08 .72*** 
Sub-band No. 3 Flux .11 .64*** 
Sub-band No. 4 Flux .10 .37 
Sub-band No. 5 Flux .02 .35 
Sub-band No. 6 Flux .14 .38 
Sub-band No. 7 Flux .06 .24 
Sub-band No. 8 Flux .09 .39 
Sub-band No. 9 Flux .39 .47** 
Sub-band No. 10 Flux .18 -.01 
**p < .01, ***p < .001 
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different metrical levels. Participants might have used such 
movements to navigate through the music and to parse and 
understand the rhythmic/musical structure better. 

V. CONCLUSION 
This study offers insights into how beat-related musical 

features influence regularity aspects of music-induced 
movement. Two regularity features, Temporal and Spatial 
Regularity, were found to correlate significantly with pulse 
clarity, percussiveness, and spectral flux of low and high 
frequency ranges. The results can be linked to the framework 
of embodied music cognition, as both regularity features can 
be related to actively controlling, imitating, and predicting the 
beat- and rhythm-related features in music, and for 
movement-based parsing and understanding of such 
structures.  

Our aim was to carry out an ecological study, as far as this 
was possible with an optical motion capture system and a 
laboratory situation. To this end, we chose real music stimuli 
(pre-existing pop songs), accepting that they were less 
controlled, very diverse, and more difficult to analyze, as 
computational analysis of complex stimuli is not yet as 
sufficiently developed as for simpler, i.e., monophonic, 
stimuli. However, this approach made it possible to present 
the participants with music that they were potentially familiar 
with, and that is played in dance clubs. One could assume that 
this kind of music would make them move more, and do so in 
a more natural fashion than more artificial stimuli.  

Future analysis approaches arise from the results of this 
study that will give more detailed insights into temporal 
behavior in music-induced movement. Such approaches will 
cover rhythm, periodicity, and synchronization related aspects, 
such as synchronization to different metrical levels, as well as 
analyses of the body parts that exhibit periodic movements on 
different metrical levels.  

Moreover, future work could include perceptual tests to 
evaluate and validate both movement and musical features. 
Perceptual experiments could be conducted, in which 
participants are asked to rate the movements presented as 
point-light videos regarding regularity aspects, for example 
the conveyance of periodicity and beat. 
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