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ABSTRACT 

Previous works on computational approaches for the description of 

pitch phenomena have employed various methodologies, 

deterministic and probabilistic, which are based on 

psychophysiological auditory stimuli modeling, representations and 

transformations (e.g. spatial, temporal, spatiotemporal), both at 

peripheral and more central stages of the auditory chain. Then, a 

confirmatory phase, utilizing data from behavioral (or even imaging) 

studies, is usually followed to assess the validity of the 

computational methods. 

The human auditory perception relies on interconnected neuronal 

networks, which have been shown to demonstrate multi-directional 

activity and dynamical, adaptive, and self-organizing properties, 

together with strong tonotopical organization along the auditory 

pathway up to the primary auditory cortex. 

This paper focuses on the exploration of properties and effectiveness 

of a certain type of computational approaches, namely self-organized 

networks, for the description of frequency and pitch related 

phenomena. A Self-Organized connectionist model is presented and 

tested. 

We explore the ability of Kohonen type neural networks (Self-

Organizing Feature Maps, SOFMs or SOMs) to organize based on 

frequency information conveyed by sound signals. Various types of 

artificially generated sound signals (ordered along a frequency/pitch 

axis) are employed in our simulations, including single tones, 

harmonic series, missing fundamental series, band limited noises, 

and harmonics with formants. Simple Fourier representations and 

their physiologically plausible frequency-to-pitch mappings (e.g. 

tonotopy in the cochlea) are used as network inputs. The networks’ 

efficiency is investigated, according to various structural parameters 

of the network and the organizing procedure, together with aspects of 

the obtained tonotopical organization. 

Our results, using different types of input spectra and various SOM 

implementations, demonstrate a clear ability for self-organizing 

according to (fundamental) frequency or pitch. However, when 

certain test configurations were used, the networks showed 

observable inability to organize, revealing limitations in the resolving 

ability of the network related to the required number (density) of 

neurons compared to the dataset size. Some more difficulties were 

also observed, relating to the type of signals for which an organized 

network can identify pitch.  

The results of this work indicate that, under some provisions, such a 

model could be effective in frequency and pitch indication, within 

certain limitations upon training parameters and types of signals 

employed. Further work will compare the efficiency of the proposed 

representation with classical computational approaches upon various 

aspects of pitch perception, together with examination of feasibility 

and possible advantages of employing SOMs in the description of 

pitch perception in various types of auditory dysfunction. 
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I. INTRODUCTION 

Pitch perception is a common but still intriguing field in 

music perception. Various computational models have been 

proposed for the explanation of pitch perceptual effects. The 

complexity of human auditory system, that is constituted by 

functionally different interconnected subsystems, compound 

with the amount of pitch phenomena that has to be illustrated 

makes the development of a unified model challenging.  

In literature three main approaches exist, with which most 

classical models can be associated, temporal, spatial and 

spatio-temporal. Temporal approach models have their roots 

in Licklider's (1954) initial model. They exploit features 

extracted from time domain representations of the acoustic 

signal, such as peak to peak distances, basilar membrane 

neural firing timings and autocorrelation functions. On the 

other hand, spatial approaches are based on spectral 

characteristics of the input signal and the way these are 

displayed along an implied dimension reflecting 

representations of tonotopic ordering (e.g. external ear). In 

this category, Terhardt's model (1979) (1982) utilize common 

sub-harmonics, Wightman's (1973) model employ the 

autocorrelation of spectra, while Houtsma and Goldstein 

(1972) match spectral excitation pattern to harmonic 

templates. Finally, spectro-temporal models (Meddis & 

Hewitt 1991) combine a spatial model of the basilar 

membrane that filters the input signal, with a subsequent 

temporal model such as autocorrelation. 

Most of the above described modeling approaches towards 

the description and/or prediction of psychophysical 

performance in relation to tonality (rather in terms of physical 

or perceptual units and less of musical meaning) rely in a big 

part to evidence from physiology, but in addition employ 

several assumptions on structures and functions of audition. 

Based on such assumptions, several tonality phenomena have 

been addressed such as frequency discrimination or pitch 

scaling. However, these assumptions are not always possible 

to be supported by physiological or behavioral evidence 

(Hawkins et all, 1995). Additionally, and most importantly, 

their predictions refer mainly to normal hearing, which could 

pose weakness or severe deflections from behavioral data 

when other modes of hearing are considered, e.g. impaired 

hearing. 

A possible route to overcome such problems of 

incompatibility (as for example in impaired hearing) could be 

to attempt to make special adaptations of the above models 
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(e.g. by adoption of proper arithmetic functions) in order to 

comply with findings and data from such cases. 

Another possibility could be to exploit well documented 

properties of the human neural and cognitive systems such as 

learning and adaptation through the flow of information, 

avoiding specific and possibly restrictive assumptions of 

certain types of processing. Artificial neural networks (or 

connectionist models) that exhibit properties of self-

organization could be a promising candidate. 

Actually, such an approach would be in accordance with 

significant amount of evidence on the type and functionality 

of representations and organization of pitch towards more 

central areas of the auditory system, where tonotopy and 

abstraction along with feature detection have been detected 

(Hawkins et all, 1995), (Bharucha,1998). 

In addition, there exist several conceptualized and 

computationally realized approaches of neural association and 

learning for pitch tasks (Bharucha,1998). For example, in the 

spirit of spatial models for pitch perception, Taylor and 

Greenhough (1994) used the ART NN employing supervised 

learning for training. The network acquires the ability to 

perform the required operation gradually, as more 

combinations of input-output data are presented. Cohen and 

Grossberg's (1995) SPINET model uses a model of hearing 

periphery and produces a distribution of strength values across 

a spatial representation of pitch as output, rather than the 

frequency of most likely pitch. Additionally, it is generally 

accepted that neural networks which form the human auditory 

system demonstrate tonotopical organization properties. In 

analogy to these, artificial self-organizing networks require no 

a priori knowledge of the relationship between input and 

output.  Consequently, no set of patterns is inserted into the 

system, in order to be compared with frequency 

representations of the input signals. Training is conducted 

through continuously feeding the network only with input 

data. The procedure clearly resembles the function of human 

brain. Bharucha (2009) suggests that the principles of self-

organization may extend across domains, such as auditory and 

music cognition, even though different representations are 

used as input. 

This work is a preliminary step in the investigation of the 

value of artificial Self-Organization in describing and 

modeling aspects of pitch perception, within the general 

framework of connectionist models.  

The main objective of this work is to investigate the main 

factors that affect the ability of a Kohonen’s Self Organizing 

Feature Map (SOFM) network to be organized when a rich 

(regarding pitch) dataset of spectral representations is 

presented as input. The resulting organized maps are 

compared between various executions of a self-organization 

experiment, when different organization parameters (such as 

network size and shape, frequency distance between 

successive pitches, organization epochs, and initial 

neighborhood of neurons) and input datasets are used. The 

input datasets, in these experiments, are Fourier transforms of 

artificially generated sound signals. Mel transform is also 

employed in some experiments and its effect, as an 

intermediate to quantifications of the fundamental into pitch, 

is recorded.  

 

II. Method 

In our paper, we study aspects of the efficiency of a SOFM in 

frequency or pitch representation by making extensive use of 

test experiments with various combinations of signals and 

parameters. The information fed to the SOFM consists of 

spectral representations of the examined signals. These 

representations are further organized and conditioned using 

various types of parameters, thus constituting the 

experimental datasets. Finally, the SOFM efficiency is 

compared along combinations of the experimental datasets 

and additional configurations of parameters regarding the 

SOFM itself. 

A. Description of the testing/experimental procedure 

In this study, we investigated the competency of Kohonen’s 

Self Organizing Feature Maps to be self-organized according 

to the harmonic content of periodic signals. That is, the self-

organization is examined against orderings of the root 

(fundamental) of harmonic series spectra or their implied 

pitches. Initially, each network was presented and organized 

with a set of frequency representations of artificially 

generated sound signals. The members of each dataset were 

Fourier transforms of signals whose pitch varied in a 

predefined range. A detailed description of the datasets 

follows in B.  

After the network organizing phase has completed, the 

same dataset was presented to the network as a test input. A 

different dataset was then used as input in order to test the 

ability of the network to generalize between different types of 

signals, by identifying the same pitch. 

B. Datasets 

The input datasets were Fourier Transforms of artificially 

generated sound signals. Each dataset consisted of signals of 

the same type. The types of signals and their respective 

spectra were: pure tones (only the fundamental present), 

complex tones composed as harmonic series, complex tones 

composed as harmonic series but with the fundamental 

missing, harmonic series filtered by a formant filter, Mel 

transformed pure and complex tones. An additional factor 

tested, was the logarithmic scale of frequency amplitude. 

The sampling frequency was 44100Hz, the FFT size was 

1024 samples. The frequency range for pure tones and the 

fundamental of complex harmonic tones was from 100Hz to 

4000Hz in steps of 10Hz. This leaves us with 391 signals 

(spectral representations) within each dataset. In experiments 

with Mel transformed spectra, the O'Shaugnessy's  equation 

was used for Hz-to-Mel transformation: 

m= 2595log
10(1+

f

700 )
 

C. Network configurations 

The SOFM network, initially, consisted of 400 neurons, 

arranged in a 20x20 square in gridtop topology. The training 

epochs were 200. The ordering phase during which weigh 

vectors of neighbouring neurons, besides the winning neuron, 

alter their values, lasted for 100 epochs. The initial 

neighbourhood, which includes the neurons that alter their 

weigh vectors at the first epoch was 15 neurons. The training 

was conducted in batch mode. 
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D. Tools 

For all experiments, the Matlab software was used for the 

signals generation, network training and results presentation. 

All parameters that are not included in C but can be 

configured in Matlab, were set to the default values of train 

function. 

 

III. Results 

The simulations conducted in this work can be classified in 

three main categories. The first category consists of 

experiments that test the ability of a self-organizing map to 

identify pitch in a dataset that includes different type of 

signals than that used in the organizing phase.  

Initially, a 20x20 neurons SOFM was organized by pure 

tones ranging from 100Hz to 4000Hz. The set of figures 

below presents the input dataset, the number of hits for each 

neuron during the organizing phase, and the distribution of 

input signals-pitches in the network when the organized 

network is presented with the same dataset. 

In Figure 1 the amplitude of FFT coefficients is in linear 

scale, resulting in narrow areas of non-zero values. Figure 2 

displays the number of dataset signals used during 

organization, for which each neuron was the winning one. The 

signals were allocated to neurons throughout the network, but 

in some cases, a single neuron was the winning for up to four 

signals. In figure 3, a route of successive pitches through the 

network is obvious revealing a tonotopic organization. 

 

 

Figure 1. Input dataset consisting of FFT transformed pure 

tones. The three axes represent signal index (391 spectra), 

frequency bins (512 frequency points of one-sided FFT) and 

spectral amplitude respectively. 

 

 

Figure 2. Sample hits during training for a 20x20 SOM network. 

Axes represent indices of the neurons’ within the SOM’s 

structure (for example a grid of 20x20 neurons, without any 

implied a-priori ordering). Each number within the grid 

(appending to the respective cell, namely indexed neuron) 

represents the number of dataset’s members, namely spectra of 

the test signals, that were assigned to the respective neuron 

during training. 

 

 

Figure 3. Pitch distribution of test signals in the organized 

network (20x20 neurons network, 400 test signals with increasing 

pitch). Pitch increases with height. 
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Figure 4. Pitch distribution of test signals in the organized 

network (20x20 neurons network), in a 2D representation. 

Pitches range from blue (low) to red (high). 

 

In an attempt to use the above organized network to 

identify pitches in other datasets, it was presented with 

complex tones consisting of  harmonics with and without the 

fundamental, as well as formant filtered or not. Figures 4, 5 

and 6 display the network response to complex tones. 

Nevertheless, when the training was conducted with the 

complex tones dataset consisted of harmonics, the training 

sample hits (figure 7), as well as the network response to the 

same dataset (figure 8) present a fine monotonic organization.   

From these figures it is obvious that pitches of signals 

belonging to a specific dataset cannot be identified by a 

SOFM organized by a different dataset. In the case of pure 

tones training and harmonics testing, the rich frequency 

content at high frequencies, even for low pitch signals, results 

in the activation of neurons that where assigned to high 

pitches during training. The same applies to formant filtered 

harmonic sequences, where the estimated pitch of almost all 

signals, concentrates at neurons assigned to formant 

frequencies.  

 

Figure 4. Network response to complex tones (fundamental + 

harmonics) (Blue corresponds to lower pitches while red to 

higher) 

 

Figure 5. Network response to formant filtered complex tones 

(Blue corresponds to lower pitches while red to higher) 

 

Figure 6. Network response to complex tones with missing 

fundamental (Blue corresponds to lower pitches while red to 

higher) 

 

Figure 7. Number of sample hits during training when the 

harmonics dataset was used 
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Figure 8. Neuron activation surface when harmonic complex 

tones were used both for training and testing. 

The next set of experiments focuses on network and 

training parameters. The purpose of this investigation is to 

determine whether better training can be achieved by altering 

the training procedure. The first parameter explored was the 

network size. The same dataset used in the previous 

experiment was used to train an 8 by 8 and a 30 by 30 SOFM. 

In the experiment described above, the number of training 

signals was almost equal to the number of network neurons. 

Here, this number was decreased and increased significantly. 

The number of network hits and the pitch distribution surface 

are presented in figures 9, 10, 11 and 12.  

These figures indicate that different pitch signals are 

activating neurons throughout the network, even if the last has 

fewer or more neurons compared to the number of signals in 

the dataset. The choice of fewer neurons introduces a 

reduction in pitch resolution for the network. On the other 

hand, employing a large network affects significantly the 

duration of training.  

 

 

Figure 9. Number of sample hits during training for the 8 by 8 

network when trained with a 400 signals dataset 

 

Figure 10. Neuron activation surface for the 8 by 8 network 

when tested with the 400 signals dataset 

 

Figure 11. Number of sample hits during training for the 30 by 

30 network when trained with a 400 signals dataset 

 

Figure 12. Neuron activation surface for the 30 by 30 network 

when tested with the 400 signals dataset (Blue corresponds to 

lower pitches while red to higher) 
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Additional training parameters that affect training include 

pitch resolution, i.e. the distance of successive pitches in the 

training set as well as training epochs, initial neighborhood 

and ordering phase duration. The cases included in the second 

stage, were increased successive pitch distance from 10Hz to 

50Hz, decreased number of epochs from 200 to 50, reduced 

initial neighborhood size from 15 to 3 and diminishing the 

ordering phase duration from 100 to 0. The training results for 

all four cases are presented in figures 13, 14, 15 and 16. The 

results reveal that while training epochs and initial 

neighborhood decrease affects slightly the training process, 

the remaining parameters have impacted training significantly. 

Pitch resolution decrease has led to an undesired activation of 

a single neuron by many signals whose pitch extends to a 

wide frequency range. Apparently such a network cannot be 

considered as successfully trained.  Furthermore, ordering 

phase value decrease, results in a reduction of neurons 

activated. 

 

Figure 13. Sample hits during training for the 50Hz pitch 

distance dataset 

 

Figure 14. Sample hits during training for the 50 epochs case 

 

Figure 15. Sample hits during training for the 3 neurons initial 

neighborhood case 

 

Figure 16. Sample hits during training for the zero epochs 

ordering phase case 

In the third set of experiments, the above mentioned dataset 

of pure tones spectra was further transformed. The motivation 

for these experiments was the fact that low pitch resolution of 

the training dataset prevents network training success. Thus 

transforming the spectrum amplitude to a logarithmic scale, 

produces more common, non-zero, coefficients for each pair 

of successive spectra. This increases the amount of 

information available to the network, in order to sort spectra 

according to pitch. Furthermore, Mel scale is widely used in 

pitch perception. The SOM’s ability to be self-organized when 

Mel transformed spectra are presented is examined here as 

well.  

Figures 17 and 18 display the sample hits and neuron 

activation surface for the 50Hz resolution dataset. While 

organization failed for the linear scaled spectrum amplitude, 

transforming spectra to logarithmic scale, improved training. 
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Figure 17. Sample hits during training with logarithmic scaled 

spectra amplitude, for the case of 50Hz resolution. 

 

 

Figure 18. Neuron activation surface for the 50Hz pitch 

resolution dataset (Blue corresponds to lower pitches while red to 

higher)  

This last figure reveals that training of a self-organizing 

map can be more efficient with this type of input patterns 

compared to linear spectra, while pertaining the ordering 

properties of the input series pitches (Figure 21). 

 

Figure 19. Mel transformed input spectra with logarithmic 

scaled amplitudes 

 

Figure 20. Sample hits during training with Mel transformed 

spectra dataset 

 

 

Figure 21. Neuron activation surface for the Mel transformed 

dataset (Blue corresponds to lower pitches while red to higher) 

 

Figures 19 and 20 present the Mel transformed dataset of 

pure tones spectra, with logarithmic scaled amplitudes and the 

sample hits of the SOM network during training.  

 

IV. Discussion 

In this work, a connectionist realization for pitch and 

frequency representation was presented and tested. The model 

is based on Kohonen’s Self Organizing (Feature) Maps. Their 

ability for self-organization according to frequency or pitch 

was explored.  

The results reveal that SOMs can effectively self-organize 

and identify pitch, assigning different complex or pure tones 

to distinct neurons monotonically. There is a specific route 

through neurons, in every trained network, on which the 

assigned pitch gradually increases. 

Nevertheless, a SOM would exhibit failure in self-

organizing in a meaningful and monotonic pattern, when the 
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training dataset demonstrates low pitch resolution. In this 

case, transforming spectral amplitudes in logarithmic units 

would alleviate a significant portion of the issue. Additionally, 

and in accordance with clues from previous works (Bharucha 

2009) an organized network may not identify pitch, when the 

training and test datasets demonstrate different timbral 

characteristics. This fact indicates that a pre-processing stage, 

where the input signal may be classified according to specific 

timbral properties, would be necessary. Thereafter, the 

appropriate SOM that corresponds to the specific timbral 

category could be employed to determine pitch. Finally, pitch 

perception related transformations of spectral frequency scale 

(such as Mel transformation) not only do they not affect self-

organization negatively, but seem to suggest less ambiguous 

pitch representations. 

A point that has to be stressed is that in this work the input 

datasets to the examined network consist of Fourier spectra of 

the test signals. However, this is just an initial choice in order 

to step into the investigation of properties and capabilities of 

the SOM representations. Actually, a more prudent choice 

would be to obtain spatiotemporal representations of the test 

signals much like the type of neural activation patterns 

answered in the auditory periphery. This could be 

accomplished by incorporating a precursory analysis stage in 

the form of a computational auditory model. And indeed, most 

of the existing models are structured in this way, namely by 

employing modules simulating the auditory periphery’s 

function (Hawkins 1995). In our work, even an elementary 

incorporation of logarithmic intensity treatment and a pitch-

like scaling of frequency axis in spectral representations 

showed to have a beneficial effect, as already mentioned. 

Moreover, this would be mandatory in cases of examining 

aspects of the application of our modelling approach in 

impaired hearing, which is one of the future targets of our 

efforts. Additionally, some more choices, which are inspired 

from auditory physiology and are already taken in existing 

approaches, would be advisable. For example, limiting the 

number of harmonics used for pitch representation is one 

rational selection stemming from facts related to the spectral 

resolving capabilities of the auditory periphery. 

In the next steps of the investigation, in addition to the 

above improvements, we shall proceed with a study of the 

pitch scaling which is provided by the current representation 

(assigning a unique pitch value to each neuron) and further 

warping to pitch scaling data from behavioural experiments 

(e.g. with normal hearing listeners). Accordingly, 

performance in related pitch tasks (such as difference limens 

determination) could be attempted and compared against other 

previously proposed models in terms of predictive power. As 

already mentioned, the current type of investigation is 

prospectively sought to be employed in a modelling 

framework of auditory performance for hearing impairments. 
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