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ABSTRACT 

This study investigated the underlying structure of musical timbre 

semantic description. Forty one musically trained subjects 

participated in a verbal attribute magnitude estimation listening test. 

The objective of the test was to rate the perceptual attributes of 23 

musical tones using a predefined vocabulary of 30 English 

adjectives. The perceptual variables (i.e. adjectives) were then 

analyzed through Cluster and Factor Analysis techniques in order to 

achieve data reduction and to identify the salient semantic 

dimensions of timbre. The commonly employed metric approach was 

accompanied by a non-metric counterpart in order to relax the 

assumption of linear relationships between variables and to account 

for the presence of monotonic nonlinearities. This rank 

transformation into an ordinal scale has offered a more compact 

representation of the data and thus confirmed the existence of 

nonlinearities. Three salient, relatively independent perceptual 

dimensions were identified for both approaches which can be 

categorized under the general conceptual labels: luminance, texture 

and mass.      

I. INTRODUCTION 

Musical timbre has been a subject of scientific research 

since the end of the 19th century.  Von Helmholtz (1877) was 

the first to investigate verbally expressed perceptual attributes 

of musical timbre and their acoustic correlates. The 

description of timbre through the use of semantic scales was 

further explored by other researchers (e.g. Lichte, 1941; von 

Bismarck, 1974a, b; Kendall and Carterette, 1993a, b). In 

these approaches, sound objects were represented by a feature 

vector of semantic attributes which are usually elicited in the 

form of descriptive adjectives. Additionally, verbal terms have 

been also used for the description of musical instrument 

properties (Disley and Howard, 2004; Fritz et al., 2008; 

Barthet et al., 2010), description of polyphonic timbre (Alluri 

and Toiviainen, 2010) and acoustic assessment of concert 

halls (Lokki et al., 2011). 

The most widely applied methods for obtaining semantic 

descriptions of timbre are semantic differential (Osgood et al., 

1957) and its variation verbal attribute magnitude estimation 

(VAME) (e.g. Kendall and Carterette, 1993a,b). In semantic 

differentiation the rating of the different sounds is made on 

scales whose extremes are labeled by two opposing verbal 

attributes such as ‘bright-dull’, whereas in VAME the scales 

are labeled by an attribute and its negation (‘not harsh-harsh’). 

Dimension reduction techniques such as Principal 

Components Analysis (PCA) (e.g. von Bismarck, 1974b; 

Lokki et al., 2011) or Factor Analysis (e.g. Alluri and 

Toiviainen, 2010) and classification techniques such as 

Cluster Analysis (e.g. Kendall and Carterette, 1993a; Disley et 

al., 2006) are usually applied in order to reduce high 

dimensionality and increase interpretability of the final 

solution.   

In a highly cited work, von Bismarck (1974a,b) performed 

a semantic differential listening test where participants were 

asked to rate the perceptual attributes of 35 steady state 

synthetic tones using 30 bipolar verbal scales. This study 

identified four orthogonal perceptual dimensions: fullness 

(full-empty), luminance and texture (dull-sharp), color 

(colorful-colorless) and density (compact-diffused). 

Other similar studies have also identified three or four 

perceptual axes. Pratt and Doak (1976), working with simple 

synthetic tones, proposed a 3-D space featuring dimensions of 

luminance (bright-dull), temperature (warm-cold) and richness 

(rich-pure). Stepanek’s study (2006) revealed dimensions 

associated with sight (gloomy-clear), texture (harsh-delicate), 

fullness (full-narrow) and hearing (noisy/rustle-?). Moravec’s 

work (2003) also resulted in the proposition of four perceptual 

axes related to sight/luminance (bright/clear-gloomy/dark), 

texture (hard/sharp-delicate/soft), width (wide-narrow) and 

temperature (hot/hearty-?). Finally, Disley’s study (2006) 

uncovered four salient dimensions labeled by the terms:             

bright/thin/harsh - dull/warm/gentle, pure/percussive - nasal, 

metallic-wooden and evolving. 

The application of PCA or exploratory Factor Analysis 

techniques on the data does not account for potential nonlinear 

relationships between the measured variables (i.e. verbal 

descriptors). On the contrary, a non-metric analysis has been 

shown to relax the more strict assumption of linear 

relationships between variables allowing for the investigation 

of monotonic nonlinearities (Woodward, 1976). Building on 

previous work (Zacharakis et al., 2011), this study investigates 

the contribution of a rank ordinal transformation towards a 

better modeling of the relationships between variables.  

The following section will describe the method of the 

listening test as well as the analytic techniques applied on the 

acquired data. Next, the comparison between the original and 

the rank transformed data representations will be presented 

and discussed. The paper concludes by summarizing the 

findings of this work. 

II. METHOD 

 A listening test using the verbal attribute magnitude 

estimation (VAME) method was designed and conducted. The 

subjects were provided with a vocabulary of 30 adjectives and 

were asked to describe the timbral attributes of 23 sound 

stimuli by choosing the most appropriate descriptors for each 

stimulus. Once a subject chose a descriptor he was asked to 
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estimate its relevance on a scale anchored by the extreme of 

the verbal attribute and its negation, such as ‘not brilliant-very 

brilliant’. This rating was input using a horizontal slider with a 

hidden continuous scale ranging from 0 to 100. The verbal 

descriptors provided were intended for the description of 

sound impression (Wake and Asahi, 1998) and were selected 

among adjectives that are commonly found in musical timbre 

perception literature (Ethington and Punch, 1994; von 

Bismarck, 1974b, a; Faure et al., 1996; Disley et al., 2006). 

The collection of the terms along with basic statistics for each 

one is presented in Table 1. However, it has been pointed out 

that verbal descriptors within a predefined set may not 

correspond to descriptors chosen spontaneously by the 

participants (Donnadieu, 2007). In order to address this 

criticism we allowed our subjects to freely insert up to three 

additional adjectives of their own choice for describing each 

stimulus in case they felt that the provided terms were 

inadequate. 

Table 1. Mean and maximum values for each verbal descriptor. 

Descriptor Max Mean Descriptor Max Mean 

Brilliant 

Hollow 

Clear 

Rough 

Metallic 

Warm 

Smooth 

Thick 

Rounded 

Harsh 

Dull 

Thin 

Shrill 

Cold 

Sharp 

33.90 

28.04 

30.02 

42.61 

58.82 

45.44 

22.09 

33.58 

47.34 

39.58 

21.92 

30.40 

24.17 

14.51 

27.39 

9.20 

8.61 

10.99 

10.95 

19.10 

13.06 

7.14 

10.74 

14.46 

12.32 

8.18 

9.37 

7.17 

6.61 

8.18 

Rich 

Bright 

Dense 

Full 

Nasal 

Soft 

Dark 

Compact 

Dirty 

Empty 

Messy 

Light 

Dry 

Distinct 

Deep 

31.97 

33.53 

18.70 

37.19 

30.12 

34.43 

29.09 

16.51 

44.70 

12.95 

27.41 

29.36 

24.19 

26.48 

59.73 

12.90 

14.50 

7.50 

12.02 

10.60 

8.07 

9.35 

5.55 

8.85 

4.75 

5.55 

5.53 

8.13 

10.66 

8.84 

 

A. Stimuli and Apparatus 

Aiming to promote ecological validity, 23 musical timbres 

drawn from acoustic instruments, electric instruments and 

synthesizers were employed. The following 14 instrument 

tones come from the MUMS (McGill University Master 

Samples) library: violin, sitar, trumpet, clarinet, piano at A3 

(220 Hz), Les Paul Gibson guitar, baritone saxophone B flat at 

A2 (110 Hz), double bass pizzicato at A1 (55 Hz), oboe at A4 

(440 Hz), Gibson guitar, pipe organ, marimba, harpsichord at 

G3 (196 Hz) and french horn at A3# (233 Hz). A flute 

recording at A4 was also used along with a set of 8 synthesizer 

sounds: Acid, Hammond, Moog, Rhodes piano at A2, electric 

piano (rhodes), Wurltitzer, Farfisa at A3 and Bowedpad at A4. 

The samples were loudness equalized in an informal 

listening test within the research team. The RMS playback 

level was set between 65 and 75 dB SPL (A-weighted). 93% 

of the subjects found that level comfortable and 85% reported 

that loudness was perceived as being constant across stimuli.  

The listening test was conducted under controlled 

conditions in acoustically isolated listening rooms. Sound 

stimuli were presented through the use of a laptop computer 

(MacBook Pro, 2.4 GHz Intel Core 2 Duo, 4 GB Ram, Mac 

OSX 10.6.8), with an M-Audio (Fast Track Pro USB) external 

audio interface, and a pair of Sennheiser HD60 ovation 

circumaural headphones. The interface of the experiment was 

built in Max/MSP. 

B. Listening Panel 

Forty one English speaking subjects (aged 17-61, mean age 

29.6, 13 female) participated in the listening test. None of 

them reported any hearing loss or synaesthesia and all 

participants were critical listeners and had been practicing 

music for 18.8 years on average (ranging from 4 to 45). 

Subjects were researchers from the Centre for Digital Music at 

Queen Mary University of London, students of the Royal 

College of Music and of the Music Department of Middlesex 

University in London. 

C.  Procedure 

Initially the listeners were presented with a preliminary 

stage which consisted of the random presentation of the entire 

stimuli set in order for them to become familiar with the 

timbral range of the experiment. For the main part of the 

experiment the playback of each sound was allowed as many 

times as needed prior to submitting a rating. The sounds were 

presented in random order for each listener. Subjects were 

advised to use as many of the terms as they felt were necessary 

for an accurate description of each different timbre, and also 

to take a break in case they felt signs of fatigue. They were 

also free to withdraw at any point. The overall procedure, 

including instructions and breaks, lasted around 45 minutes for 

most of the subjects. The majority of participants rated the 

above procedure as easy to follow, clear and meaningful. 

D. Cluster Analysis, Exploratory Factor Analysis and 

rank ordering transformation 

Two statistical analysis techniques were applied to the data 

in order to reach conclusions regarding the salient perceptual 

dimensions of timbre. Cluster Analysis is a technique that 

seeks to identify homogeneous subgroups within a larger set of 

observations (Romesburg, 2004) and has been used in order to 

indicate groups of semantically related verbal descriptors. 

Factor Analysis is a multivariate statistical technique that is 

used to uncover the latent structure of a set of inter-correlated 

variables (Harman, 1976). 

Given the objective of this study, Exploratory Factor 

Analysis (EFA) is more suitable than the frequently used 

Principal Components Analysis (PCA). This is because EFA 

aims at modeling the structure of correlations among the 

original variables (i.e. adjectives) rather than achieving a 

simple data reduction (see Fabrigar et al., 1999). The 

difference between the two techniques lies in the fact that EFA 

treats each measured variable as a linear combination of one 

or more common factors and one unique factor while PCA 

does not differentiate between common and unique variance. 

Therefore, PCA merely represents the variance of a set of 

variables in contrast to EFA which targets at explaining the 

relationships among variables within a set. Thus, EFA was 

preferred for identifying the underlying perceptual dimensions 

of timbre.  

In order to better account for possible nonlinear 

relationships between the variables (i.e. adjectives) we applied 
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a simple rank ordering transformation to the data. We then 

performed the same analytic approach for both original and 

transformed variables so as to test the hypothesis of potential 

existing nonlinearities by examining the effect of the 

transformation on the final solution. 

III. ANALYSIS 

The quantity estimations on each verbal descriptor and each 

musical timbre were averaged over the 41 subjects. 66% of the 

subjects used at least one extra term, thus providing 131 

additional verbal descriptors. 35 of these terms were inserted 

more than once and 26 were used by more than one 

participant.  

The analytic strategy used in order to reduce the large 

number of variables (30) was structured upon four basic steps. 

In the initial step, a centroid Hierarchical Cluster Analysis 

based on squared Euclidean distances was employed in order 

to reveal the major clusters and outliers among the adjectives. 

The outliers were the adjectives that could not be grouped 

with other adjectives as they appeared to have many instances 

of low inter-correlation coefficients. Such variables were 

identified and discarded by observation of the dendrograms. 

 A preliminary factor analysis (FA) with a non-orthogonal 

Oblimin rotation
1
 of the extracted factors was then performed 

within each of the clusters in order to identify its salient 

adjectives. The original variables featured an extreme positive 

skewness while the transformed variables were uniformly 

distributed. Thus, the FA technique used was the Principal 

Axis Factoring that makes no distributional assumptions. The 

adjectives with extracted communalities
2
 < 0.6 were then 

discarded. This criterion ensures that only the verbal 

descriptors that are explained adequately by the model for 

each cluster were maintained. 
Subsequently, an inspection of the correlation matrix led to 

the removal of multicollinear verbal descriptors. 

A final FA, again with a non-orthogonal rotation of the 

factors, applied on this reduced set of salient adjectives 

resulted in the major factors (i.e. perceptual dimensions). The 

descriptors featuring communalities < 0.6 were again 

discarded and the remaining set of descriptors was subjected 

to a final FA. The final data reduction step used factor 

loadings as a criterion. Factor loadings are the regression 

coefficients between variables and factors. Their values 

indicate the relative contribution that a variable makes to a 

factor and are crucial for the labelling and interpretation of the 

factors. Only the descriptors with factor loadings > 0.75 were 

considered significant in this work. 

IV. RESULTS 

The strategy described in the analysis section was applied 

to both original and rank transformed data. The application of 

centroid Hierarchical Cluster Analysis revealed the clusters 

and the outliers. Figures 1 and 2 show the dendrograms of the 

                                                                 
1 A non-orthogonal rotation of the initial orthogonal solution that allows 

factors to be correlated is preferred in order to increase interpretability of the 

perceptual dimensions.  
2  Communalities measure the percent of variance in a given variable 

explained by all the factors jointly. 

original and rank transformed adjectives respectively. The 

comparison between the two dendrograms shows that the 

transformation results in a higher organization of the data. 

This is more evident in the clusters dirty-messy-rough-harsh-

nasal and dark-deep-thick-rich-full-dense which become 

significantly tighter. Furthermore, the cluster empty-light-

hollow is dissolved and its members are grouped into the other 

existing clusters. Cluster smooth-soft-warm-rounded-dull also 

becomes tighter except for dull which is more separated and 

hollow which is added. Finally, the largest cluster becomes 

only slightly looser and with one additional member in the 

transformed case. 

Overall, a dendrogram featuring one less cluster and two 

others significantly tighter supports that the application of the 

rank ordering transformation leads to a more compact 

representation of the data. This fact is a first indication of 

existing nonlinear relationships between the original variables 

that are accounted for by the applied transformation. 

The data reduction strategy that was described in the 

analysis section resulted in a 3 factor solution for both the 

original and the transformed variables. Table 2 shows the 

percentage of total and factorial variance explained prior the 

non-orthogonal rotation. It is evident that there is both a small 

increase of the total explained variance and a significantly 

higher concentration of the accounted variance (additional 

7.6%) in the first two factors for the transformed variables. 

This suggests the presence of higher correlations between the 

transformed variables and is also in agreement with the more 

compact representation of the data that was evident from the 

centroid Hierarchical Cluster Analysis.  Thus, even a simple 

rank ordering transformation of the verbal attributes seems to 

account for the presence of nonlinearities and results in a more 

consistent solution compared to the untransformed variables. 

Table 2. Total and factorial variance explained prior the non-

orthogonal rotation for the original and rank transformed 

variables . 

 1st Factor 2nd Factor 3rd Factor Total 

Original  42.8% 24.5% 9.8% 77.1% 

Rank Transf.  46.4% 28.5% 5.2% 80.1% 

 

Two goodness-of-fit indexes of the model that were 

produced from the final FA of our data reduction strategy are 

presented below. The Kaiser-Meyer-Olkin (KMO) criterion
3
 

can be calculated for individual and multiple variables and 

varies between 0 and 1. In our analysis KMO was 0.645 for 

the original and 0.686 for the transformed case both of which 

are regarded as ‘mediocre’ but acceptable (Hutcheson and 

Sofroniou, 1999) and the Bartlett's test of sphericity also 

showed statistical  significance
4
. 

Table 3 shows the correlation coefficients and angles 

between the non-orthogonally rotated factors for both original 

and transformed variables. 

                                                                 
3 KMO assesses the sample size (i.e. cases/variables) and predicts if data are 

likely to factor well based on correlation and partial correlation. 
4 Bartlett's test examines the hypothesis that the correlation matrix under 

study is significantly different from the identity matrix. Significance on this 

test confirms this hypothesis. 
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Figure 1. Dendrogram of the original adjectives. 

The angles are calculated by the cos 
-1

(corr.coeff). Table 3 

shows that the rotated solution for the transformed variables 

exhibits higher inter-dimensional correlations than the solution 

for the original ones.  

Table 3. Inter-dimension correlations and angles. 

Correlation coefficient Orig. variables Transf. variables 

r12 -0.217 (77.5o) -0.343 (69.9o) 

r23 0.033 (88.1o) 0.251 (75.46o) 

r31 0.320 (71.33o) 0.432 (64.4o) 

 

 

Tables 4 and 5 show the pattern matrices for the original 

and transformed variables respectively. Only the adjectives 

with factor loadings > 0.75 are depicted and will be used for 

factor interpretation. For the original variables, the factors 

could be labeled as Factor 1: Brilliance/Sharpness, Factor 2: 

Roughness/Dirtiness and Factor 3: Thickness/Fullness. 

Similarly, for the transformed variables Factor 1: 

Lightness/Thinness vs. Thickness/Density, Factor 2: 

Roughness vs. Clarity and Factor 3: Brilliance/Sharpness vs. 

Warmth. 

V. DISCUSSION 

As highlighted in the result section, the rank ordering 

transformation of the variables (semantic descriptors) 

contributed towards a more compact representation of the data 

something that is demonstrated by the clearer formulation of  

 

Figure 2. Dendrogram of the transformed adjectives. 

clusters in the dendrogram. 

Furthermore, the transformed Factor Analysis solution 

explained a slightly higher percentage of total variance and 

significantly increased the concentration of the accounted 

variance in the first two factors. This fact is an indication that 

a non-metric transformation of perceptual variables can 

account for existing nonlinear relationships between them and 

provide a potentially more consistent factor configuration. 

Future work should consider the application of more elaborate 

nonlinear transformations on the data in order to achieve an 

even more robust modeling of nonlinearities. 

From examination of tables 4 and 5 it is evident that despite 

the variations of the exact labeling terms, the two solutions 

retain a conceptual similarity among the identified dimensions. 

The three perceptual dimensions could be conceptualized as 

related to luminance, texture and mass. This finding is of 

particular interest as it is in agreement with the results of an 

identical study that we have performed in the Greek language 

(see Zacharakis et al., 2011). This provides evidence of inter-

linguistic similarities regarding musical timbre semantic 

description. It also seems to support the findings of one of the 

first studies in the field of musical timbre semantics conducted 

by Lichte (1941) and recent findings regarding polyphonic 

timbre verbalization by Alluri and Toiviainen (2010). 

It is apparent that especially for the transformed variables 

case, the borders between percepts are not always absolute. As 

an example, the mass dimension is also represented by terms 

such as: dark which belongs to the conceptual category of 

luminance. 
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Table 4. Factor loadings of the original variables. Only the 

loadings > 0.75 are presented. 

  Factor  

 1 2 3 

Brilliant -0.945 … … 

Sharp -0.814 … … 

Bright -0.779 … … 

Thick … … 0.828 

Dense … … 0.803 

Rough … 0.964 … 

Harsh … 0.750 … 

Dirty … 0.877 … 

Full … … 0.794 

 

Table 5. Factor loadings of the transformed variables. Only the 

loadings > 0.75 are presented. 

  Factor  

 1 2 3 

Brilliant … … 0.804 

Sharp … … 0.809 

Clear … -0.874 … 

Warm … … -0.819 

Thick -0.872 … … 

Dense -0.814 … … 

Thin 0.758 … … 

Rough … 0.870 … 

Harsh … 0.750 … 

Dirty … 0.787 … 

Soft … … -0.753 

Light 0.792 … … 

Dark -0.766 … … 

Deep -0.751 … … 

 

Furthermore, the luminance dimension is also represented by 

the terms sharp and soft which better fit in the texture 

dimension.  

As noted previously, the dimensions that resulted from the 

transformation of the variables are more inter-correlated 

compared to the original solution. Luminance and mass are the 

stronger correlated ones for both cases (r = 0.320 and r = 

0.432). Texture and mass is also weakly correlated (r = -

0.343) for the transformed case while totally independent for 

the original case (r = 0.033). Finally, luminance and texture 

exhibit an equally weak correlation for both cases (r = -0.217 

and r = 0.251). 

As a final remark, it is evident that the non-metric 

transformation did not affect the qualitative interpretation of 

the perceptual dimensions. However, the value of this 

approach lies in the yield of more accurate representation of 

sound stimuli positions within the identified perceptual timbre 

space. This is particularly significant in the search for acoustic 

correlates of the perceptual dimensions. 

VI. CONCLUSION 

This study not only investigated the latent dimensions of a 

verbally described perceptual space of musical timbre, but 

also addressed potential nonlinear relationships between the 

perceptual variables. 

The data of a verbal attribute magnitude estimation 

(VAME) listening test have been processed by dimension 

reduction techniques. A metric and a non-metric approach 

have been carried out and compared. Results showed that a 

simple rank ordering transformation of the data improved their 

representation and explained a larger amount of variance with 

fewer dimensions compared to the untransformed case. This 

supports the hypothesis of existing nonlinearities among the 

perceptual variables that have been more efficiently modeled 

by the non-metric approach.   

The three identified perceptual dimensions explained 

around 80% of the total variance and shared common 

qualitative characteristics for both metric and non-metric 

approach. They can be categorized as relating to the 

description of: luminance, texture and mass of a sound object. 

This finding is in agreement with previous studies on musical 

timbre verbalization and can be further exploited for the 

development of a semantic framework for musical timbre 

description. 
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