Structural Conditions of Predictability in Post-Tonal Music: The Compound Melodic Structures of Nikos Skalkottas’s *Octet*

Petros Vouvaris

Department of Music Science and Art, University of Macedonia, Greece
vouvaris@uom.gr

ABSTRACT

The investigation of compound melodic structures has been an implicit feature of most analytical approaches that adopt a prolongational perspective with respect to the hierarchical structure of tonal music. When it comes to theorizing the compound structure of melodies with no apparent tonal orientation, the problematics of prolongation associated with post-tonal music discourage the espousal of the aforementioned approaches without adapting their methodological paradigm to the requisites of this specific musical idiom. This thesis concurs with the fundamental premise of the present paper as relates to the opening thematic melodies of the three movements of Nikos Skalkottas’s *Octet*. Their analysis aims at proposing an interpretation of their compound structure, based on an investigation of the salient features that account for their respective associative middleground. The perceptual relevance of these features is factored in the analysis by assimilating the conclusions of empirical research on auditory stream segregation in relation to the implied polyphony of monophonic tonal music. The analysis evinces the resemblance of the associative middleground of Skalkottas’s compound melodies to prolongational structures commonly associated with tonal melodic lines. These findings prompt the assessment of the compound character of the *Octet*’s thematic melodies as one of the work’s structural attributes that induce and/or undermine expectations related to schematic, dynamic, veridical, and conscious predictability.

I. **INTRODUCTION**

The term “compound melody,” also referred to as “polyphonic melody,” “implied polyphony,” or “pseudopolyphony,” is used to denote the structure, the compositional technique, and/or the perceptual effect of more than one voices outlined within a single melodic line. Related theory textbook descriptions call attention to the registral leaps that “split” tonal melodies into multiple voices delineated by register (Laity, 2008; Aldwell & Schachter, 2003). The association of compound melodic structures with the tonal idiom cannot but be due to the inherently polyphonic nature of all tonal melodies from a prolongational standpoint (e.g. analytical approaches that espouse the theories of Heinrich Schenker (1977) implicitly consider tonal melodies to be based on progressions of harmonically and/or contrapuntally functional chords, prolonged through their embelished unfolding). In this respect, all tonal melodies may be considered latently compound, allowing for the apposite registral distribution of their pitch material to delineate their inherent counterpoint as it unfolds temporally—and not spatially—within a prolongational structure.

The concept of prolongation would be the point of contention in any attempt to meaningfully transfer the investigation of compound melodic structures to the realm of post-tonal music. According to Joseph Straus (1987, 1997), the notion of prolongation in a post-tonal context is problematic on account of many reasons, the two primary ones pertaining to issues of harmonic support and embellishment: on one hand, not knowing which harmonies are consonant and which ones are dissonant makes the discrimination of structural from non-structural tones highly speculative; on the other hand, with the twelve-tone chromatic scale, instead of the diatonic one, acting as the primary referential set, the very concept of adjacency is compromised, making the determination of the ways in which non-structural tones embellish structural ones arbitrary (Straus cites Nicola Diben (1994) for empirical support to his thesis). Nevertheless, Straus admits the validity of adopting a prolongational approach when negotiating the apparent “tonal echo” of certain post-tonal progressions (Straus, 1987, p. 24). One could reverse Straus’s line of reasoning and assert that the pitch material of certain post-tonal progressions may be considered to be organized in such a way as to resemble a prolongational structure and thus occasion the emergence of tonal implications.

The preceding proposal concurs with the present paper’s primary argument, specifically applied to the opening thematic melodies of the three movements of Nikos Skalkottas’s post-tonal *Octet* for flute, oboe, clarinet, bassoon, and string quartet (1931). The analysis that follows aims at offering an interpretation of the compound structure of these melodies, based on an investigation of the salient musical features that account for its assertion. At the same time, it seeks to uphold the perceptual relevance of this structural interpretation by assimilating the conclusions of relevant empirical research on the perception of implied polyphony in monophonic tonal music. The paper concludes with an assessment of the compound structure of the *Octet*’s thematic melodies as one of the work’s structural attributes that induce and/or undermine expectations related to different types of predictability. These expectations are then invoked to educe a defensible hermeneutical claim about the *Octet* in the form of what Lawrence Kramer calls “a putting of meaning into action” (Kramer, 2011, p. 7).

II. **METHODOLOGICAL BACKGROUND**

A. Compound melody and associational voice leading

Accepting the limited pertinent of the prolongational approach with respect to the investigation of post-tonal voice leading, the analysis adopts the “associational” model proposed by Joseph Straus (1982, 1987) and Christopher Hasty (1981). This model is preferred over the other methodological alternative, often termed “transformational” (Straus, 1997, 2003), given the emphasis of the analysis on the pitch-specific structure of the melodies in question and not the implicit pitch-class counterpoint induced by the transformational operations of transposition (T_r) and inversion (T_i) between
their constituent sets. However, when it comes to addressing the pitch-class-set relationships both within and between the instrumental parts of a specific formal unit, the transformational model is employed.

Apropos of the examination of post-tonal melodic structures, the associational approach postulates that non-consecutive tones in a melodic line may be associated by various contextual means, such as register, rhythmic duration, metric placement, timbre, dynamics, and articulation. An evident continuity in some of the domains mentioned above occasions the connection of tones separated in time into linear structures that pertain to an associative middleground. For the purposes of the present analysis, the salient structural feature that is primarily, though not exclusively, taken into account is the relative registral distribution of the pitch material of the melodies in question, since it is in relation to this particular domain that they display a distinctive and relatively consistent regularity.

It is important to emphasize that the associational approach advocates the inference of lines and not voices. As Straus points out, the lines of an associative middleground, heard one at a time, consist of notes that cohere with respect to some distinctive musical parameter; conversely, a voice is “a manifestation of an underlying pitch-class counterpoint,” whose tones are prolonged albeit acoustically not always present (Straus, 1997, pp. 241-2). It should be noted, however, that post-tonal melodic passages with evident tonal references take on the appearance of prolongational spans, in which case the distinction between line and voice is not utterly straightforward.

B. Compound melody and auditory stream segregation

Although the present analysis focuses on aspects of relative and not absolute registral pitch distribution, it is important that it makes up for the lack of a methodological paradigm regarding the rigorous and perceptually relevant negotiation of the form-defining role of register in post-tonal melodic structures. To this end, it adopts the analytical approach set forth by Stacey Davis (2006) for the investigation of implied polyphony in J. S. Bach’s solo string works. What makes Davis’s approach suitable for the examination of post-tonal compound melodic structures is the fact that it is based on a bottom-up rule system, not taking into account the top-down processing involved in dealing with music that functions within the framework of tonal harmony and voice leading. However, given the diatonic context of the musical repertoire it addresses, it needs to be accommodated to the requisites of the non-diatonic post-tonal idiom.

Davis’s bottom-up rule system is based on findings from previous empirical research in “auditory stream segregation,” i.e. the tendency of a sequence of tones to be perceptually separated into multiple streams under certain conditions (Bregman & Campbell, 1971). These conditions primarily pertain to the relationship between the degree of frequency separation and the sequence rate: if two alternating tones are separated by an interval larger than five semitones, their sequence will not be perceptually split into two separate streams unless they are repeated at a high rate (e.g. interonset intervals of 50 ms); conversely, if they are separated by an interval smaller than five semitones, they will tend to be perceptually integrated into a single stream even at high rates of repetition (van Noorden, 1975). Davis acknowledges that the implied polyphony of actual musical compositions cannot fully abide to the conditions of auditory stream segregation and, therefore, it cannot induce the unambiguous separation of a monophonic line into multiple streams. Nevertheless, she reiterates the proposition offered by Albert Bregman (1990) that implied polyphony in actual music does not aim at occasioning unambiguous stream segregation, but at creating a sense of ambiguity as to the perceived number of voices employed, an ambiguity that has multiple repercussions in the expressive performance and reception of the music that incorporates it (Davis, 2009, 2011).

Davis’s rule system aims at identifying the possible points of a melody’s illusion (i.e. the points of transition from one implied voice to another) by calculating the cumulative indexical weight of three fundamental structural features: interval size, contour change, and conjunct motion. According to Davis’s model, the larger the cumulative indexical weight related to an alleged point of illusion, the clearer the sense of transition from one implied voice to another. Following is a brief presentation of the way in which these features are adapted to the provisions of the present analysis:

1) Interval size. Large intervals are more likely to occasion transitional points. In agreement with the related empirical research cited before, five semitones mark the threshold between small and large intervals. With the five semitones receiving one point, all larger intervals are assigned additional points according to their size. It is in respect to the calculation of the exact indexical weight of intervals larger than five semitones that the present analysis deviates from Davis’s model: given the non-diatonic context of the melodies under investigation, all intervals receive an additional point for each chromatic (and not diatonic) step by which they exceed the threshold interval (e.g. an interval of nine semitones is assigned five points, as in the case of the opening “major sixth” D5-B5 in Figure 3ii). Although the resulting index number for each interval is inevitably larger than the respective one in Davis’s analysis, this deviation is inconsequential to the comparative way in which the cumulative indexical weight of all three structural features is used in the present analysis to assess the relative perceptual clarity of each alleged point of illusion.

2) Contour change. When the direction of an interval larger than five semitones is opposite to that of either of its adjacent intervals, the related contour change may signal a point of illusion. Davis draws support for the perceptual validity of this claim from prior empirical research in the effect of V-shaped tone progressions on the induction of multiple auditory streams (Heise & Miller, 1951) and assigns one point for each contour change surrounding the interval in question (e.g. in Figure 3ii, the descending “minor sixth” B5-D5 is surrounded by two ascending leaps D5-B5 and D4-A5).

3) Conjunct motion. If the discontinuity introduced in a melody by an interval larger than five semitones marks a potential point of transition between two implied lines, then a tone sequence of stepwise motion in either side of this interval suggests a melodic continuity within each respective line that enhances the effect of transition. In this regard, one point is assigned for each instance of a “unison” (i.e. repeated note) or
a “major/minor second” surrounding the interval in question, provided the consecutive conjunct motion is not interrupted by a rest (e.g. although the “diminished octave” leap G5–G4 in Figure 3ii is not preceded by stepwise motion, it is followed by a unison and a subsequent ascending “minor second,” thus receiving two points). Despite the aforesaid elusiveness of the notion of adjacency in the non-diatonic referential context of post-tonal music, the present analysis embraces the conventional conception of conjunct motion in terms of stepwise progression inasmuch as it seeks to infer the constituent associative lines of the compound melodic structures in question without either differentiating between structural and non-structural tones or specifying the way the latter embellish the former.

It should be pointed out that Davis focuses on monophonic passages from Bach’s solo string works that are characterized by a marked uniformity in terms of surface rhythm, timbre, dynamics, and articulation. In this context, the domain of registral pitch distribution, addressed systematically through the quantitative investigation of the three structural features specified in Davis’s approach, is practically the only one that can account for the compound structure of these passages (another one being metric placement). This maximizes the appositeness of Davis’s rule system for this specific repertoire. In the case of Skalkottas’s Octet, however, the much more complex setting of its thematic melodies with respect to rhythm, dynamics, and articulation may interact with the relative registral distribution of their pitch material. This interaction can enhance or diminish in a quantitatively inestimable way the effect of Davis’s structural features upon the induction of the melodies’ compound structure and thus limit the applicability of the related methodological model. For this reason, the present analysis incorporates Davis’s rule system not for the primary inference of the melodies’ associative middleground, but as a means of corroborating in a perceptually meaningful way the effect of all relevant salient features upon its induction.

III. ANALYSIS

In investigating the compound structure of the opening thematic melodies of Skalkottas’s Octet, the analysis proceeds from the second, to the third, and then to the first movement. The reason for this rather unorthodox order has to do with the relative complexity of the three melodies as regards their respective associative middleground structures. As far as the labelling of pitch classes and pitch-class sets is concerned, the taxonomic system of Allen Forte (1973) is employed.

A. Second Movement

The opening thematic phrase of the second movement comprises five instrumental parts (Fig. 1). These parts are organized in a way that seems to condition what according to auditory scene analysis could be described as four auditory streams (the homorhythmic, unidirectional, and timbrally homogeneous oboe and clarinet parts account for a single one; for more on the distinction between voice and stream see Cambouropoulos, 2008; Karydis, Nanopoulos, Papadopoulos, Cambouropoulos, & Manolopoulos, 2007). In this context, the flute melody is conspicuously set in the highest register and dynamic level over the viola’s countermelody and the repetitive accompanimental patterns of the oboe-clarinet and cello parts.

![Figure 1. Opening thematic phrase of the second movement of Skalkottas’s Octet, ms 1-4](image)

In terms of pitch-class structure, the z-related complementary hexachords 6–z19 and 6–z44 of the twelve-tone flute melody, each pertaining to a rhythmically articulated subphrase, are internally rearranged retrogradely in the twelve-tone viola countermelody in terms of both the order of their constituent trichords and their comprising pitch classes (Fig. 2; the dashed rectangle signifies a diversion from the otherwise strict retrograde of the related trichord’s pitch-class content). Each subphrase of the melody-countermelody complex is accompanied by freely rearranged subsets of its respective complementary hexachord in the oboe-clarinet and cello parts.

![Figure 2. Pitch-class structure of the opening thematic phrase of the second movement of Skalkottas’s Octet, ms 1–4](image)

In terms of melodic structure, the opening subphrase of the conspicuous thematic melody in the flute part may be described as compound due to the salient registral distribution of alternate pitches in proximal positions (Fig. 3i; dashed beams indicate associative voice leading patterns, solid lines immediate pitch connections). The perceptual relevance of such an interpretation could be maintained on account of its accordance with the position of the potential points of fission as indicated by the cumulative indexical weight of the three
structural features adapted from Davis’s methodological paradigm (Fig. 3i).

![Image of musical notation]

i. Associative middleground of the first subphrase of the opening thematic melody from the second movement of Skalkottas’s *Octet*, ms 1-2.
ii. Indexical weight of the three structural features [interval size (Int.), contour change (Cont.), and conjunct motion (Conj.)] that account for potential points of fission of the opening thematic melody from the second movement of Skalkottas’s *Octet*, ms 1-4.
iii. Associative middleground of the opening thematic melody from the second movement of Skalkottas’s *Octet*, ms 1-4.

The “diminished octave” leap G5-G#4 in the second subphrase of the melody could be assumed to denote the transition to a third, lower line due to the striking registral displacement it entails (Fig. 3iii). The ensuing return to the registral area of the beginning may suggest an associative link with it, indicated in the middleground graph as an overarching chromatic descent D5-D#5-C5. Although the transition from the middle to the lower line receives cognitive support from Davis’s rule system—note the high cumulative indexical weight of the G5-G#4 connection in Figure 3ii—the subsequent retransition from the latter to the former does not. This incongruence diminishes the perceptual relevance of such a structural interpretation and may be considered to account for a sense of growing ambivalence inherent in the structure of the opening thematic melody with respect to its compound character (this sense is depicted graphically through the cross-staff bounding of the two lower lines in Figure 3iii). The limited perceptual pertinence of the aforementioned retransition does not necessarily diminish its cogency from a theoretical perspective, given the support it receives from such contextual features as the similarity between the two tetrachords of the middle line and the pitch-class sets of the cello’s accompaniment (cf. Fig. 2).

It is worth noting the marked tendency of the subsequent appearances of the opening thematic melody to undermine its compound character from both a theoretical and a perceptual perspective. In its immediate varied repetition in the viola part, the same part that carried the countermelody in the initial statement of the opening thematic phrase, the inversion of the intervals of the first subphrase diminishes the perceptual relevance of its implicitly compound structure (cf. Fig. 4i and Fig. 3iii). Moreover, the first subphrase now appears to close not on F#5 but on the rhythmically and metricaly articulated

Ex.5. This reconfiguration of the boundaries of the first subphrase brings to the fore a motivic feature that permeates the entire *Octet* and is inherent but not apparent in the first appearance of the opening thematic melody (Fig. 4ii).

![Image of musical notation]

i. Indexical weight of the three structural features that account for potential points of fission of the thematic melody from the second movement of Skalkottas’s *Octet* in its first varied repetition, ms 5-7.
ii. Associative middleground of the thematic melody from the second movement of Skalkottas’s *Octet* in its first varied repetition, ms 5-7.

Concerning the second subphrase, the registral dispersal of its pitch-class content annuls the registral return that concluded the melody in its inaugural appearance and thus appears to destabilize its initially balanced structure. From a perceptual perspective, the indexical weight of Davis’s structural features indicates more unambiguous transitional points than before, yet the greater number and incoherentiality of the implied lines weaken the very structural interpretation this data is called upon to uphold.

![Image of musical notation]

Figure 4. The final, “liquidated” reappearance of the thematic melody from the second movement of Skalkottas’s *Octet* at the closing of its first formal section, ms 19-22

The gradual disintegration of the compound structure of the original thematic melody is intensified as the movement approaches the end of its opening formal section (the movement follows a ternary formal scheme A-B-A’). In its last appearance before the beginning of the contrasting middle section B, the structure of the opening thematic melody
emerges in “liquidated” form, to use one of Arnold Schoenberg’s idiomatic terms (Schoenberg, 1970), within a denser and more intricate textural setting (Fig. 5). The repetition of rhythmically unstable figures, each based on the pitch material of one of the melody’s constituent trichords, loosens the potential inter-set associative links and projects the intra-set pitch relationships that inhere in surface melodic features of the original thematic melody.

B. Third Movement

In terms of auditory scene analysis, the opening of the third movement appears to be similar to the one of the second movement with respect to the common tendency to reduce the number of potential auditory streams in relation to the number of distinct instrumental parts (Fig. 6). This tendency, conditioned not only by the pairing of certain instrumental parts in a homorhythmic, unidirectional, and timbrally homogeneous setting (clarinet and bassoon, second violin and viola) but also by their consecutive, non-simultaneous appearance, allows for the effectual projection of the flute’s melody within a relatively transparent texture.

With respect to its pitch-class structure, the flute’s thematic melody is based on a twelve-tone row (S_1) that comprises two complementary 6-15 hexachords at T_4 relation to each other. As far as the accompanying parts are concerned, their pitch-class content could be considered to derive from the vertical juxtaposition of two twelve tone rows (S_2 and S_3) both with similar internal structure in terms of their constituent unordered pitch-class subsets: two complementary and z-related hexachords (6-225 and 6-247 for S_2, 6-224 and 6-246 for S_3), the first one subdivided into two trichords, 3-2 and 3-4 (Fig. 7). Related subsets of the two rows are vertically aligned to form groups that consistently appear as such throughout the movement, similar to what Schoenberg terms “contrapuntal combinations” (Schoenberg, 2006). Within each one of these combinations, enclosed in differently colored rectangles in Figure 7, pitch classes are flexibly employed (e.g. pitch class 6 is substituted for pitch class 10 in the S_1 row of the bassoon part, given the duplication of the former within the contrapuntal combination of the two opening 3-2 sets).

From a transformational perspective (Straus, 1997, 2003), the counterpart between concurrent unordered pitch-class subsets appears to be largely based on so-called “third relations.” Even the maximally uniform T_4 relation between the two concluding hexachords is offset by an interval-class-8 relation, a “descending major third” instead of a “descending minor third” (the offset by one semitone from an absolute transposition at T_4 is indicated as $T_4(1)$ in Figure 7). It is worth adding that this emphasis on “third relations” between unordered pitch-class sets is extended beyond the abstract realm of transformational voice leading to the actual counterpoint of pitches on the musical surface, inasmuch as it seems to be established in the accompaniment at the beginning of the phrase (note amongst other things the aforementioned substitution of pitch classes in the opening of the bassoon line) only to be somewhat subverted as the phrase unfolds (note the increasing number of dissonant harmonic dyads within the second and third contrapuntal combinations).

This noted emphasis on “third relations” seems to be echoed in the opening gesture of the largely disjunct thematic melody of the flute part (Fig. 8ii). After an initial descent by thirds, the two consecutive sixth leaps that conclude the first subphrase may be considered to imply, through the consistency of the double registral return they entail, a strong associative link between inexpressive yet proximal pitches in each one of the melody’s two registral extremities (Fig. 8i). This link seems to be corroborated by the cumulative index of the three structural features that, according to Davis’s rule system, account for the perceptual relevance of the related point of fission (Fig. 8ii).

Such an associative link may be considered to retrospectively imbue the C6 of the second measure with a mediating role between the two implied outer lines (graphically depicted by a double slur in Figure 8i). Considering the stepwise pitch progression within the second subphrase as the projected continuation of C6 due to the registral proximity of the former to the latter, this mediating pitch may be inferred to implicate a third, middle line (Fig. 8iii).

Although the inference of a middle line appears unsupported from the perceptual outlook of Davis’s bottom-up rule system (Fig. 8ii), its credibility as a defensible interpretative possibility with regard to the melody’s compound structure could be validated by the top-down perspective of the schematic expectations it might be thought to entail. The structural attributes of the opening subphrase, pertaining to
such salient features as its two consecutive descending thirds and the subsequent delineation of its two implied outer lines, are highly suggestive of a voice-leading pattern based on an arpeggiated triadic structure. This pattern may be considered to act as the contextual cue of a tonal “cognitive schema,” an “auditory generalization” that represents a “common enculturated aspect of musical organization” (Huron, 2006, p. 225). Though in need of concrete empirical verification, the aforementioned claim draws its potential validity from the precedence of past research in the possibility of incorporating tonal schemata in the perception of non-tonal music (Krumhansl, Sandell, & Sergeant, 1987; Huron & von Hippel, 2000). In the context of the schematic expectations presumed to be set up by the tonal implications of the melody’s opening subphrase, the inference of a middle line as the projected continuation of an “inner” C6 would not seem utterly conjectural.

Figure 8. i. Associative middleground of the first subphrase of the opening thematic melody from the third movement of Skalkottas’s Octet, ms 1-5. ii. Indexical weight of the three structural features that account for potential points of fission of the flute’s opening thematic melody from the third movement of Skalkottas’s Octet, ms 1-10. iii. Associative middleground of the flute’s opening thematic melody from the third movement of Skalkottas’s Octet, ms 1-10. iv. Three-part reduction of the flute’s opening thematic melody from the third movement of Skalkottas’s Octet, ms 1-10, based on a triadic interpretation of its associative middleground

The presumed perceptual relevance of a triadic reading of the first subphrase could prompt the investigation of the credence of such a reading for the second subphrase as well. In fact, the associative middleground of the entire thematic melody appears to be amenable to such an interpretation (Fig. 8iv). However, the ambivalence of this analysis from both a theoretical and a perceptual perspective increases as the melody proceeds from the first to the second subphrase. On one hand, the absence of a functioning tonal framework, capable of validating whatever tonal orientation the implicative voice-leading pattern of the first subphrase sets up, makes it hard for the regulative force of a triadic interpretation to be consolidated in the second one. On the other hand, the inadequacy of the F5-A5 connection to establish, according to Davis’s criteria, the perceptual possibility of a voice-leading transition relativizes the associative link between C6 and A5 and hence the related linear pitch continuity. The same goes for the penultimate pitch C6 with respect not only to its middleground association with E,6 vis-à-vis its immediate connection with B5, but also to its immediate connection to D5 vis-à-vis its middleground association with a projected D6 (although, as a matter of fact, it is D6 instead of D5 that appears in all but one subsequent appearances of the thematic melody in the movement).

Figure 9. i. Indexical weight of the three structural features that account for potential points of fission of the flute’s thematic melody at P7 from the beginning of the second section of the third movement of Skalkottas’s Octet, ms 102-109. ii. Associative middleground of the flute’s thematic melody at P7 from the beginning of the second section of the third movement of Skalkottas’s Octet, ms 102-109

The preceding discussion reveals a similarity between the opening thematic melody of the second movement and that of the third one in reference to their common tendency to gradually undermine the compound structure they initially set up. As already pointed out in the case of the second movement, this tendency also appears to be a defining element of its large-scale structural narrative built around the subsequent reappearances of its opening thematic melody. In the case of the third movement, which follows a compound ternary rondo-like formal scheme ABAC-A’B’A’C’-A (Mantzourani, 2006), an interesting variant of this narrative may be proposed. The second formal section (A’B’A’C’), based on the transposition of the pitch material of the first one (ABAC) by seven semitones, opens with a drastic reconfiguration of the original thematic melody in a rhythmically uniform setting that encourages the application of Davis’s methodological model (Fig. 9). The almost entirely unbound beams of the three implied lines in the graph reflect the decidedly more unambivalent pertinence of the melody’s associative middleground from a perceptual perspective in comparison to that of its original appearance in the beginning of the movement (cf. Fig. 8). Conversely, this reduction appears to lend itself less readily to a triadic interpretation than the corresponding one in the opening melodic configuration. This interesting renegotiation of the music’s structural attributes so as to condition somewhat conflicting bottom-up and top-down perceptual processes seems to be an essential characteristic of
the movement’s middle section, a characteristic that accentuates its “harmonic” demarcation with respect to the first one and enhances the effect of the latter’s eventual return, albeit in an abridged form (A).

C. First Movement

The motivic feature that seems to emerge throughout the second and third movement of the Octet (Fig. 4ii and 8iii) is even more prevalent in the first movement. Figure 10 demonstrates the way in which motive x and its related motive forms permeate the musical surface of its opening thematic phrase. Actually, the whole movement is characterized by a marked emphasis on motivic coherence that may be interpreted as an attempt to counterbalance the absence of the more systematic organization of pitch material found in the other two movements (although all twelve pitch classes are employed in the opening thematic melody, the compositional technique adopted for the entire first movement is evidently not serial).

Figure 10. Opening thematic phrase of the first movement of Skalkottas’s Octet, ms 1-4

As far as the structure of the violin’s opening thematic melody is concerned, the apparent proximity of inconsiderate upper-register pitches that owe their salience to their rhythmic duration, metric placement, articulation, and dynamics evinces the projection of the implied top line in Figure 11ii. The lack of cross-beam connections involving the upper line depicts graphically the limited ambiguity of its perceptual prominence, verified by the position of the possible points of fission that are identified through the application of Davis’s rule system (Fig. 11i).

The interpretation of the melodic configuration of the remaining pitch material in terms of an interrupted sequence of descending thirds prompts the inference of two parallel-moving lower lines, disrupted by the octave displacement of the concluding third E4-C#4. This inference is of course wanting from a perceptual standpoint on the basis of Davis’s bottom-up rule system. Nevertheless, from the top-down perspective of the tonal schematic expectations that the structural attributes of the first half of the thematic melody might be thought to set up (a voice-leading pattern based on an arpeggiated triadic structure, as in the opening thematic melody of the third movement), the proposition of two lower lines moving in parallel thirds within an overall triadic setting appears to be a defensible interpretative possibility (Fig. 11iii). What is more, the limited perceptual relevance of this reading does not necessarily diminish its validity from a theoretical perspective, given the support it receives from ascertaining the saturation of all the structural levels of its associative middleground with the ubiquitous presence of the same motive that permeates the entire Octet (cf. Fig. 4ii and Fig. 8iv).

Figure 11. i. Indexical weight of the three structural features that account for potential points of fission of the flute’s opening thematic melody from the first movement of Skalkottas’s Octet, ms 1-4. ii. Associative middleground of the flute’s opening thematic melody from the first movement of Skalkottas’s Octet, ms 1-4. iii. Three-part reduction of the flute’s opening thematic melody from the first movement of Skalkottas’s Octet, ms 1-4, based on a triadic interpretation of its associative middleground

Beyond the obvious motivic connection between the opening gesture of the thematic melody of the first movement and that of the third one, it is worth also noting the similarity between the two melodies with respect both to the implicitly triadic structure of their associative middleground and to their common tendency to undermine the compound structure they initially set up (note that both cases involve a striking downwards registral displacement in their conclusion). These structural similarities account for a sense of cyclical organization for the overall formal plan of the Octet, analogous to the one employed for the internal organization of its movements.

IV. CONCLUSIONS

The compound structure of the melodies employed in the opening thematic phrases of the three movements of Skalkottas’s Octet implies an aggregate of associative lines that unfolds temporally within a single instrumental part. The resemblance of this aggregate of lines to the inherent counterpoint of voices in the compound structure of a tonal melody may be considered to set the grounds for regarding the incorporation of compound melodic structures in post-tonal music as a structural attribute that conditions what is usually referred to as schematic predictability (Huron, 2006). In fact, the preceding analysis brings implicitly the interpretative claim of a melody’s compound structure in reciprocal relation to the perceptual relevance of the tonal implications it may be thought to entail. On one hand, the opening of each compound melodic structure of the Octet delineates large-scale pitch
connections that are highly suggestive of tonal voice-leading patterns, even though its respective first-order pitch relationships might not necessarily be tonally implicating. For instance, the pitch-class content of the twelve-tone row on which the thematic melody of the second movement is based is melodically arranged so that its opening subphrase may readily suggest a prolongational middleground comparable to a two-part cadential pattern (it would be interesting to apply the Krumhansl-Schmuckler key-estimation algorithm used by David Huron and Paul von Hippel (2000) to ascertain the limited “tonal” quality of the respective twelve-tone row). On the other hand, a tonally implicating opening melodic gesture, like the ones in the thematic melodies of the first and third movements, may grant validity to the interpretative possibility of its compound structure from the top-down perspective of the schematic expectations it might be thought to entail.

Sure enough, this correlation between schematic predictability and the compound structure of post-tonal melodies calls for empirical verification. Nonetheless, if in fact the schematic predictability conditioned by the opening of the Octet’s thematic melodies rests upon the compound quality of its structure and the tonal implications it is deemed to occasion (or be occasioned by), then the tendency of this structure to break down and lose its perceptual relevance as the melody unfolds cannot but induce the violation of related schematic expectations. In this context, to amplify on Huron’s argument concerning Schoenberg’s twelve-tone music (Huron, 2006, pp. 339-344), the post-tonal thematic melodies of Skalkottas’s Octet may be considered to be as much “contra-tonal” as pro-tonal. Such a proposition may offer a possible explication of the discursive dipole of tradition-innovation so often ascribed to Skalkottas’s music (Tsougras, 2011).

Beyond schematic predictability, it would be interesting to venture on a cursory investigation of the structural attributes that may condition expectations related to the other three types of predictability advocated by Huron (2006), namely dynamic, veridical, and conscious predictability. Work-specific expectations associated with the first type may be occasioned by the work’s prevalent motivic and thematic repetitions evinced in the preceding analysis. Expectations that relate to veridical memories may be structurally conditioned by the identification of allusion, quotation, or parody and may thus be experienced by listeners who have keen knowledge of the repertoire. In the case of the Octet, it would be possible for a knowledgeable listener to detect the striking motivic resemblance between the opening gesture of the thematic melody from the first movement of Skalkottas’s work and that from the Allegro moderato section of the first movement of Stravinsky’s 1923 Octet for wind instruments (Fig. 12; cf. Fig. 11i). The same listener would be able to give credence to her interpretation of this resemblance as an allusive quotation, if she framed her listening experience with the verbalizable knowledge that might have conditioned her conscious expectation of such an event in the first place (e.g. the knowledge of the chronological order in which the two works were composed, the similarity in the wording of their titles etc.).

Such an interpretation would seem even more convincing to the listener, if she were aware of one of Skalkottas’s published reports from Berlin, where he had been studying with Schoenberg since 1927, to the Athenian magazine Mousikê Zêê [Musical Life] in February 1931, just five months before the presentation of his own Octet in a concert at the Akademie der Künste. In this report, Skalkottas gives a critical account of the first concert of the then newly-founded International Society for Contemporary Music, expressing his unreserved admiration for Stravinsky’s Octet that was included in the program: “And the concert ended in humorous joy with the Octet for wind instruments . . . by Stravinsky [sic]. This ingenious musikant [sic] knows how to wittyt persiflate [sic] the classics and the moderns. His Octet brings to mind English or American cabaret comedians, who manage to entertain the public for hours straight with a false seriousness” (Skalkottas, 1931).

![Figure 12. Igor Stravinsky, Octet for wind instruments, first movement (Sinfonia), ms 42-47](image)

The claim that Skalkottas actually incorporated an allusion to Stravinsky’s Octet in his own homonymous work would of course require more than just circumstantial evidence to be substantiated. Nonetheless, it would be difficult to contest the possibility of such a fact and refute the potency of its related veridical expectations to inform the process of the construction of meaning in which everyone is believed to be inescapably involved when experiencing music (Cook, 2001; Kramer, 2011). In effect, one could take this resemblance qua allusion as the basis for what Kramer describes as “semantic performativity,” the interpretation of a resemblance as an “act of adapting an expressive pattern to suit a new context” (Kramer, 2011, p. 168). In this regard, the seemingly trivial surface motivic resemblance between Skalkottas’s work and that of Stravinsky may be considered the entry point of the former into the “semantic looping” of a hermeneutic circle (Kramer, 2002, pp. 151-59) that occasions the proliferation of the work’s meaning by absorbing the semantic potential of such schematic, dynamic, veridical, and conscious expectations as the ones previously discussed.

From this perspective, one could broaden the scope of the structural attributes of Skalkottas’s Octet that encourage its association with Stravinsky’s music to include processual resemblances that are structurally more compelling than the apparent similarities of surface motivic features. One such structural resemblance pertains to the large-scale motivic statement within the compound melodic structure of the opening thematic melody of the Octet’s first movement (Fig. 11iii). The composing-out of a motivic unit over large musical spans is typical of Stravinsky’s music as well, in which, according to Straus (1987, pp. 15-17), “the musical motions at
the highest level frequently follow a context-dependent motivic path that mimics traditional tonal patterns" (for a related discussion on hierarchy in Stravinsky’s Octet from a prolongational standpoint see Haimo, 1987). In the case of Skalkottas’s Octet, however, the way in which such tonal implications, conditioned by (or conditioning) the compound structure of its thematic melodies, are set up only to be subsequently subverted should not be construed as a failed attempt to either restore the regulative force of tonality or break away from it. The associative middleground of Skalkottas’s compound melodic structures ascertains their accord with the paradigm of Schoenberg’s music in mimicking “the prolongational types of tonal music without their original significance,” it thus affirms the structural tendency of Skalkottas’s music not only “to create coherency, but simultaneously to comment ironically on the conventions of the past” (Straus, 1987, pp. 17-19). If framed by the aforementioned association of Skalkottas’s work with that of Stravinsky, this interpretative claim may be furthered in an even more provocative way. Should we read the structural resistances between the two works as allusions, the Octet may be thought to register Skalkottas’s own “persiflage” of Stravinsky. In this respect, Skalkottas banter the banterer and, in doing so, affords himself the ironic distance to assert his critical stance against both the conventions of the past and the contingency of their negation.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Andrew Westerhaus for his valuable comments and observations.

REFERENCES

