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ABSTRACT 
Music software applications often require similarity-finding 
methods. One instance involves performing content-based searches, 
where music similar to what is heard by the listener is retrieved from 
a database using audio or symbolic input. Another instance involves 
music generation tools where compositional suggestions are provided 
by the application based on user-provided musical choices (e.g. 
genre, rhythm and so on) or samples. The application would then 
generate new samples of music with varying degrees of musical 
similarity. Although several similarity algorithms such as edit 
distance methods and hidden Markov models already exist, they are 
not fully informed by human judgments. Furthermore, only a few 
studies have compared human similarity judgments with algorithmic 
judgments. In this study, we describe an empirically derived 
measure, from participant judgments based on multiple linear 
regression, for determining similarity between two melodies with a 
one-note change. Eight standard melodies of equal duration (eight 
notes) were systematically varied with respect to pitch distance, pitch 
direction, tonal stability, rhythmic salience, and melodic contour. 
Twelve comparison melodies with one-note changes were created for 
each standard. These comparison melodies were presented to 
participants in transposed and non-transposed conditions. For the 
non-transposed condition, predictors of similarity were pitch 
distance, direction and melodic contour. For the transposed 
condition, predictors were tonal stability and melodic contour. In a 
follow-up experiment, we show that our empirically derived measure 
of melodic similarity yielded superior performance to the Mongeau 
and Sankoff similarity algorithm. We intend to extend this measure 
to comparison melodies with multiple note changes. 
 

I. INTRODUCTION 
Music software applications require the use of efficient 

similarity-finding methods for various reasons. Two important 
instances when similarity finding methods are required are (a) 
in content-based music search engines, where pieces of music 
or songs similar to the one being heard by the listener need to 
be retrieved from a database based on symbolic or audio input 
(Clausen & Kurth, 2002; Pauws, 2002; Prechelt & Typke, 
2001; Typke, Wiering, and Veltkamp, 2005), and (b) in music 
composition tools that provide compositional suggestions 
based on user-provided choices such as genre, rhythm and so 
on. For example, a music generation application might take a 
specific sample of music as input and generate new samples 
with varying degrees of melodic and rhythmic similarity. 
Ideally, the application would generate a ranked list of 
selections based on similarity with the source sample. 

Many similarity-finding algorithms already exist in the 
domain of music information retrieval. Some of these 
algorithms are string matching algorithms such as edit 
distance (McNab, Smith, Witten, Henderson, and 
Cunningham, 1996; Wagner & Fischer, 1974; Mongeau & 

Sankoff, 1990), while some are probabilistic such as Markov 
and, and hidden Markov models (Kim, Lee, Yoon, and Lee, 
2008). Although a few previous studies have compared 
human similarity judgments with algorithmic judgments 
(Eerola, Järvinen, Louhivuori, and Toiviainen, 2001; 
Müllensiefen & Frieler, 2004a, 2004b, 2007), applications in 
the domain of music information retrieval that use similarity 
measures are still fairly devoid of cognitive approaches 
informed by human judgments. In the extensive comparison 
study conducted by Müllensiefen and Frieler (2004a), melodic 
similarity measurements computed by 50 algorithms were 
compared with similarity judgments of 99 human participants. 
The stimuli consisted of 14 melodies and 84 variants of these 
melodies. Müllensiefen and Frieler found that edit distance 
measurements with a rich symbolic representation compared 
well to human similarity judgments. 

Our goal in this study was to extend beyond the mere 
comparison of empirical and algorithmic judgments of 
musical similarity, and to provide an empirically derived 
measure for determining similarity between two melodies 
based on human judgments. A method based purely on human 
judgment could either be implemented within an existing 
music analysis/generation application as is, or added as a 
higher level similarity measure, on top of an existing set of 
low level similarity algorithms, prioritized under certain 
conditions. This approach would allow the application to 
resemble human cognition when evaluating for similarity. 

In this paper, we describe our method for determining 
similarity based on five separate musical predictors. We 
consider these five predictors as quasi-independent variables 
that affect human similarity judgments with respect to 
melodies. While several low level acoustic features within the 
audio signal may play a role in affecting human judgments of 
similarity across different pieces of music, we restricted our 
set of predictors to five high level musical concepts: pitch 
distance, pitch direction, rhythmic salience, melodic contour, 
and tonal stability. These five predictors were chosen because 
of their importance in capturing the musical content within a 
melody as perceived by a listener.  

Empirical studies have demonstrated the importance of 
rhythm as well as pitch when linking musical structure to 
cognitive processes (Krumhansl, 2000). Smith and Cuddy 
(1989) found that pitch changes were easier to detect in the 
context of a binary meter as compared to a ternary meter. 
Prince, Schmuckler, and Thompson (2009) found that 
participants were more accurate at making timing judgments 
when a tonally stable probe occurred on a metrically stable 
position or when a tonally unstable probe occurred on a 
metrically unstable position. A number of studies by Dowling 
and colleagues (1971, 1972, 1978) have demonstrated the 
importance of contour in melody recognition, particularly in 
the case of transposed melodies. Schubert and Stevens (2006) 
showed that listeners use pitch distance as an important factor 
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for determining similarity across melodies. Based on evidence 
from these and related studies, we selected our set of five 
predictors. Our method for deriving a similarity-finding 
measure was based on multiple linear regression as 
represented by the following equation. 

 
y = mx1 + mx2 + mx3 + mx4 + mx5 +B                          (1) 

 
Here, y is the magnitude of similarity on a scale from 1 

(least similar) to 5 (most similar); x1, x2, x3, x4, and x5 are the 
values of the five predictors; m is the slope corresponding to 
the beta weight for each predictor; and B is the intercept 
(constant). 

II. METHOD AND MATERIALS 
Twenty-two participants (15 female) from the Ryerson 

community participated in this experiment. Participants 
received credit for an introductory psychology class. They had 
0 to 15 years of music training (M = 4.3, SD = 4.4) and ranged 
in age from 18 to 41 years (M = 23.3, SD = 8.3). Each 
participant heard an eight-note standard melody followed by 
an eight-note variation of the standard. The variation was 
referred to as the comparison melody. After listening to the 
comparison melody, listeners rated the level of similarity 
between the standard and comparison melodies on a 
Likert-type scale from 1 (least similar) to 5 (most similar). 

We composed eight standard melodies. Four of these 
melodies were in the C major scale, while the remaining four 
were in the C minor scale. All melodies were of equal 
duration and consisted of eight isochronous notes. To ensure 
that the eight standard melodies were characteristic of real 
melodies with tonal organization, we verified them by 
correlation with the Krumhansl and Kessler profiles 
(Krumhansl & Kessler, 1982), and resolution to the tonic. 

We created 12 unique comparison melodies (variants) for 
each standard by systematically manipulating the standard 
with respect to rhythmic salience, pitch distance, and pitch 
direction. Three of the 12 variants were created by increasing 
the pitch of the fourth note in the standard melody by one, two, 
or three scale notes. Likewise, three more variants were 
created by decreasing the pitch of the fourth note in the 
standard melody by one, two, or three scale notes. Six 
additional variants were created by adopting the same 
procedure on the fifth note of the standard melody instead of 
the fourth note. 

Each stimulus consisted of three bars. A percussive rhythm 
track was played for the entire duration of all three bars. The 
standard melody was played in the first bar, followed by a bar 
of rest, followed by a bar of the comparison melody. The 
rhythm track that accompanied the standard and comparison 
melodies consisted of eight isochronous eighth note clicks per 
bar representing an 8-note pulse at a tempo of 120 bpm. 
Clicks 1, 3, 5, and 7 were strongly accented, while clicks 2, 4, 
6, and 8 were weakly accented. This alternating pattern of 
strong and weak accents provided a clear binary metric 
framework. Since each melody was eight notes in duration, 
each eighth note click corresponded to a note-onset in the 
melody. The design of the comparison melodies as described 
above enabled us to vary the levels of the five predictors in 
the following manner. 

(1) Rhythmic salience: On the basis of short-term memory 
theory (Murdock Jr., 1962), we chose to make pitch 
manipulations only on notes 4 and 5 as opposed to notes 
closer to the beginning or end of the melodic sequence. 
Choosing notes towards the middle of the melodic sequence 
allowed us to avoid any confounding effects associated with 
primacy or recency. Since note 4 in the melody occurred on a 
weakly accented position and note 5 occurred on a strongly 
accented position, a change to note 4 in the comparison 
melody was regarded as a change occurring on a position of 
weak rhythmic salience (coded as 0), while a change to note 5 
was regarded as a change occurring on a position of strong 
rhythmic salience (coded as 1).  

 
(2) Pitch distance: Degree of change in pitch with respect to 
the standard melody was coded as 1, 2, or 3 corresponding to 
a change by one, two, or three scale tones respectively. 

 
(3) Pitch direction: Direction of pitch change with respect to 
the standard melody was captured by coding an increase as 1 
and a decrease as -1. 

 
(4) Tonal stability: Since all melodies were either in C major 
or in C minor, notes in the major and minor scales were 
divided into three levels of tonal stability. The tonic, C, was 
the most stable. The third and the fifth scale notes (E, G for 
major; Eb, G for minor) fell into the second level of stability. 
All remaining notes in the scale fell into the third level, which 
was the least stable. The changed note in the comparison 
melody was coded for change in tonal stability with respect to 
the standard. Codes ranged from -2 to 2, depending on the 
magnitude and direction of the change. No change in tonal 
stability was coded as 0. 

 
(5) Melodic contour: Change in melodic contour was coded 
with respect to the changed note (4 or 5), the note preceding it, 
and the note succeeding it. For example, if note 4 was 
changed in the comparison melody, then contour change was 
examined by taking notes 3, 4, and 5 into consideration. 
Contour changes were coded based on Narmour’s 
implication-realization model (1990). A change in contour 
was coded as 1, and no change was coded as 0.  
 

Figure 1 provides examples of three different cases 
illustrating how contour changes were coded. In the first 
melodic segment (a), note 4 decreases in pitch in the 
comparison melody. Hence, pitch direction between notes 
3-4-5 changes from up-down in the standard to same-same in 
the comparison and is considered a change in melodic contour. 
In the second melodic segment (b), note 4 increases in pitch in 
the comparison melody. Hence, pitch direction between notes 
3-4-5 changes from up-up in the standard to up-same in the 
comparison. On the basis of the implication-realization model, 
this is not considered as a change in melodic contour. In the 
third melodic segment (c), note 4 decreases in pitch. Hence, 
pitch direction between notes 3-4-5 changes from same-down 
to down-down in the comparison. Taking into account the 
ascending pitch direction from 2-3, 3-4 would be interpreted 
in the standard melody as going up. The change in pitch 
direction occurring between notes 3-4-5 of the standard 
(up-down) ceases to be a change in pitch direction in the 

1075



comparison (down-down) and is therefore considered as a 
change in melodic contour. 

 
(a) 

 
 
(b) 

 
 
(c) 

 
 
Figure 1.  (a) Pitch decrease in note 4 and change in melodic 
contour. (b) Pitch increase in note 4 and no change in melodic 
contour. (c) Pitch decrease in note 4 and change in melodic 
contour. 
 

Examples of standard melodies and their variants, and the 
coding of predictor variables for each of these variants are 
provided in Table 1. In addition to making similarity 
judgments of comparison melodies in the same key as the 
standard melody, we also asked participants to make 
similarity judgments for comparison melodies that were 
transposed. When a melodic fragment is repeated under 
transposition, listeners are generally able to appreciate that the 
fragment has been repeated despite its presentation using a 
novel set of pitch classes. In certain contexts, while the main 
parts of a composition (such as the chorus and bridge) retain 
the same key, a motif may be repeated in a transposed key 
generating a sense of perceptual novelty while still retaining a 
sense of similarity (Van Egmond, Povel, and Maris, 1996). 
Hence, our motivation for presenting transposed melodies to 
participants in addition to same-key melodies was to 
understand how the five predictors affect similarity judgments 
across transpositions, and how their effect is different from 
non-transposed comparisons. 

Prior to listening to the stimuli, participants went through a 
training phase where they familiarized themselves with the 
eight standard melodies. In the training phase, participants 
were made to listen to each of the eight melodies for six 
repetitions. After the training phase, participants heard all the 
stimuli in two blocks, one consisting of all the major melodies 
and one consisting of all the minor melodies. Each block 
contained 96 stimuli. 48 stimuli consisted of same-key 
comparisons (12 variants x 4 standard melodies). The 
remaining 48 stimuli were transposed versions of the same 
variants. All 96 stimuli were presented in a randomized order 
such that participants were unaware prior to listening as to 

whether the comparison melody would be a same-key or a 
transposed variant. 

Table 1.  Example of one variant for each of two standard 
melodies, with coded values for the five predictor variables. Here 
SM = Standard Melody, VT = Variant Type, CM = Comparison 
Melody, D = Pitch Distance, Di = Pitch Direction, T = Tonal 
Stability, R = Rhythmic Salience, C = Melodic Contour.  

 
 
The procedure used for creating transposed versions and 

presenting them to participants is described as follows. 
Previous work using transposed melodies suggests that when 
a melody is transposed, as pitch distance increases and the 
number of shared pitches decreases from the current key to 
the transposed key, the level of difficulty in perceiving the 
similarity between the two melodies increases (Frances, 1958, 
as cited in Dowling, 1978). Following previous work by 
Dowling (1978), we transposed all the melodies up by a major 
third (C to E) and down by a minor third (C to A). Four 
different transposition sets were created where for each of the 
eight standard melodies, the comparison melodies were either 
transposed up or transposed down as described here. In Set 1, 
all comparisons from standard melodies 1 and 4 in C major 
and C minor were transposed up, while comparisons from 
standard melodies 2 and 3 in C major and C minor were 
transposed down. In Set 2, all comparisons from standard 
melodies 2 and 3 in C major and C minor were transposed up, 
while comparisons from standard melodies 1 and 4 in C major 
and C minor were transposed down. In Set 3, all comparisons 
from standard melodies 1 and 2 in C major and C minor were 
transposed up, while comparisons from standard melodies 3 
and 4 in C major and C minor were transposed down. In Set 4, 
all comparisons from standard melodies 3 and 4 in C major 
and C minor were transposed up, while comparisons from 
standard melodies 1 and 2 in C major and C minor were 
transposed down. Participants were assigned to any one of the 
four sets. 

III. RESULTS AND DISCUSSION 
A mixed design analysis of variance (ANOVA) was 

performed for major and minor melodies using 
within-subjects factors of melody (1-4) and variant (1-12), 
and a between-subjects factor of transposition set. As 
expected, our results indicated no between-subjects effect due 
to transposition set. Separate linear regressions were then 
performed on the non-transposed and transposed melody 
comparisons. For non-transposed melodies, we performed 
stepwise regression using the five predictors as independent 
variables and the mean similarity ratings for each specific 
type of comparison melody as the dependent variable. This 
method allowed us to examine which of the predictor 
variables were strongly correlated with the similarity ratings, 
and include only the strongly correlated variables in the 
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regression model. The model that emerged from the stepwise 
analysis contained only three predictor variables: pitch 
distance, pitch direction, and melodic contour. The model was 
significant (F(1,91) = 11.3, p < .001) and accounted for 
26.9 % of the variance in the similarity values. Pitch distance 
and pitch direction (p < .01, p < .01 respectively) were 
significant as predictors in the model. Melodic contour was 
marginally significant (p = .06). When tonal stability was 
entered into the model, the increase in explained variance was 
negligible, tonal stability was not significant as a predictor (p 
= .25), and melodic contour became a significant predictor (p 
< .05). Thus we arrived at our formula for measuring 
similarity between a standard and a comparison melody with a 
one-note change by applying the values obtained in the initial 
regression involving stepwise entry of the variables: 
   
YNONTRANSPOSED = -0.12x1 + 0.17x2 -0.13x3 + 3.56                 (2) 

 
Here YNONTRANSPOSED is the similarity value, x1 is the change in 
pitch distance of the note between the standard and 
comparison melodies, x2 is the direction of its pitch change, 
and x3 is the change in melodic contour. The contribution of 
each predictor, to the overall variance, is shown in Figure 2. 
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Figure 2. Percentage of variance contribution of each predictor 
variable in the similarity-finding model for non-transposed 
melodies. 
 

For transposed melodies, we performed stepwise regression 
similar to the non-transposed melodies using the five 
predictors as independent variables and the mean similarity 
ratings for each specific type of comparison melody as the 
dependent variable. The model that emerged from the 
stepwise regression analysis contained only two predictor 
variables: tonal strength and melodic contour. The model was 
significant (F(1,92) = 12.9, p < .001) and accounted for 
21.7 % of the variance in the similarity values. The inclusion 
of pitch distance and pitch direction within the model did not 
result in any noticeable improvement. However, although 
rhythmic salience was not a significant predictor (p = .15), the 
model’s performance improved slightly with its inclusion. 
With these three predictors the model accounted for 23.4% of 
the variance in the similarity values. Since this increase was 
still low, we opted for the two-predictor model consisting of 
tonal strength and melodic contour, which were both 
significant as predictors (p < .05, p < .001 respectively). The 
formula for measuring similarity between a standard and a 
transposed comparison melody with a one-note change was 

thus determined by applying the values obtained in the initial 
regression involving stepwise entry of the variables: 
 
YTRANSPOSED = -0.057x1 -0.27x2 +2.85                        (3) 

 
Here YTRANSPOSED is the similarity value, x1 is the change in 
tonal strength of the note between the standard and 
comparison melodies, and x2 is the change in melodic contour. 
The contribution of each predictor, to the overall variance, is 
shown in Figure 3. 
 

 
 
Figure 3. Percentage of variance contribution of each predictor 
variable in the similarity-finding model for transposed melodies. 
 

Prior to running the regression analysis, we assumed that 
both rhythmic salience and tonal stability would have an 
effect on the similarity judgments of participants for 
non-transposed melodies. Specifically, with respect to 
rhythmic salience we expected that if a note was altered on a 
strong beat (note 5) instead of a weak beat (note 4), the 
change on the strong beat would be interpreted by the listener 
as more salient. Hence, changes in similarity between the 
standard and the comparison melodies would be perceived 
more easily when occurring on a strong beat. 

There are three possible reasons why rhythmic salience and 
tonal salience were not reflected in the regression model for 
non-transposed melodies. First, all the notes in the melodies 
were isochronous. Each note-onset overlapped exactly with 
each click of the rhythm. Hence the relative contrast between 
a strong beat (position 5) vs. a weak beat (position 4) may not 
have been enough for the listener to perceive, despite the use 
of physical accents. Second, instead of perceiving each note 
as an eighth note, listeners may have considered each note as 
a quarter note. In such a case, each melody spans two bars. 
Listeners may have considered the beat in position 4 to be a 
pick-up beat or anacrusis for the next successive bar 
(positions 5, 6, 7, 8). Therefore, position 4 may have been 
perceived as a position of strong rhythmic salience instead of 
weak rhythmic salience, thereby nullifying the role of 
rhythmic salience as a predictor. Third, all pitch changes of 
the altered note were still in the same scale as that of the 
standard melody. Therefore, although the change in tonality 
could be coded in the form of three levels of stability, none of 
the pitches were tonally unstable. This may have nullified the 
effect of tonal stability as a predictor. 

In the case of transposed melodies, melodic contour and 
tonal stability were the only predictors that had explanatory 
power. Pitch distance and direction did not have any effect. 

1077



The effect of melodic contour on similarity judgments of 
transposed melodies has been highlighted in previous work by 
Dowling (1978). Listeners encode melodic structure at 
different levels. At a low level, encoding occurs at the level of 
pitches. This could be described as a form of local encoding. 
At a higher level, encoding may be occurring at the level of 
melodic contour where ups and downs in the melodic curve 
are captured. This could be described as a form of global 
encoding. When the comparison melody is transposed to a 
different key, listeners lose a basis for making direct 
pitch-to-pitch comparisons with the standard. However, 
higher-level features captured by melodic contour are still 
retained, thereby promoting their salience. Given that listeners 
cannot directly make pitch-related comparisons with the 
standard melody, as in the case of non-transposed melodies, 
tonal stability of pitches acts as a strong indicator of the scale 
of the melody. 

IV. PERFORMANCE EVALUATION 
Since Müllensiefen and Frieler (2004a) found that edit 

distance measurements with a rich symbolic representation 
compared well to human similarity judgments, we decided to 
evaluate our regression model, by comparing its performance 
with an edit distance method. Given that the comparison 
melodies in our stimuli differed from the standard melodies 
by one note, a string-matching edit distance method such as 
the one used by Wagner and Fischer (1974) would fail to 
detect any differences in similarity between the comparison 
melodies. All 12 comparison melodies would be considered as 
dissimilar by 1 unit from their standard melody. The Mongeau 
and Sankoff (1990) similarity-finding algorithm is an 
adaptation of the string-matching edit distance measure, used 
for comparing musical sequences across scores. While taking 
into account distances through insertions, deletions, and 
replacements of notes between two sequences, it also 
incorporates the consonance or dissonance of the replaced 
note within the dissimilarity measure. For example, if a note 
in the source sequence is replaced by another note, a weight is 
incorporated depending on the consonance or dissonance of 
the pitch interval between the original note and the new note, 
such that, the higher the dissonance, the greater the weight. 
Hence, we decided to compare the performance of our 
empirically derived measure (EDM) with the Mongeau and 
Sankoff measure (MSM). 

A. Evaluation Experiment Method and Materials 
For the purpose of testing our EDM, we created two 

standard test melodies, one in C major, and one in C minor. 
These melodies were of equal duration and consisted of eight 
isochronous notes, similar to the standard melodies used for 
deriving the regression model. We verified that these 
melodies were characteristic of real tonal melodies by 
correlation with the Krumhansl and Kessler (1982) profiles 
and resolution to the tonic. We created 12 comparison 
melodies for each standard by applying the exact procedure 
used for our study, and manipulating note 4 and note 5 of the 
standard. 

Eight participants (3 female) from the Ryerson community 
participated in this experiment. They had 0 to 20 years of 
music training (M = 7.8, SD = 6.5) and ranged in age from 20 
to 42 years (M = 28.8, SD = 8.2). Participants were 

administered the same experimental procedure as was used for 
the regression analysis. After listening to the comparison 
melody, they rated the level of similarity between the standard 
and comparison melodies on a Likert-type scale from 1 (least 
similar) to 5 (most similar). 

We computed similarity values between the comparison 
melodies and their standards as predicted by the regression 
model in Equation (2). The MS algorithm was used to 
compute the dissimilarity values between the comparison 
melodies and their standards. Since the dissimilarity values 
range between 0 and 1, we converted these values into 
similarity values by subtracting them from 1. To compare the 
EDM and MSM with the mean similarity ratings of 
participants for each type of standard-variant comparison, we 
normalized similarity values in the following manner.  
 
Normalized Similarity Value = (SV-MinSV)/(MaxSV-MinSV)         (4) 

 
Here, SV is the similarity value, MinSV is the minimum 

similarity value across all the comparison melodies, and 
MaxSV is the maximum similarity value across all the 
comparison melodies. We calculated the mean total error for 
EDM by (a) computing the absolute difference between the 
normalized similarity values of the EDM and the normalized 
participant ratings, and (b) taking the average across all the 
values. Likewise, we calculated the mean total error for MSM. 

Although averaging across all participants for each 
standard-variant comparison seems appropriate as a basis for 
developing our EDM, there are a few disadvantages.  Each 
participant might have a substantially different judgment of 
similarity for a specific standard-variant comparison based on 
his or her subjective perception. An additional possibility is 
that a certain subset of participants might provide a high 
similarity rating while another subset of participants might 
provide a low similarity rating for the same standard-variant 
pair. The mean rating would fall somewhere in the middle of 
the scale, thus failing to capture the variance in participant 
ratings. To acknowledge these potential pitfalls of averaging, 
we also assessed the performance of EDM and MSM on the 
responses of all eight participants. 

B. Evaluation Results and Discussion 
The mean total error was 21.6% for the EDM and 52.5% 

for the MSM, indicating performance values of 78.4% and 
47.5% respectively. The performance of the EDM for major 
and minor melodies was 82.8% and 74% respectively, 
whereas for the MSM it was 44.7% and 50.4% respectively. 
When compared with individual participant ratings, the 
performance of the EDM ranged from 59.5% to 76.5%, 
whereas the performance of the MSM ranged from 42.7% to 
69.8%. These results clearly suggest that the EDM performed 
better than the MSM. One issue to be mindful of is that the 
MSM is used to detect similarities in musical sequences that 
differ in pitch as well as duration. The comparison melodies 
in our stimuli differ from their standards only in pitch but not 
in duration. Thus, the power of the MSM may have been 
compromised when applied to our stimuli. Figure 4 depicts 
participant similarity ratings alongside, EDM values, and 
MSM values, in the form of z-scores for all the 12 variant 
melodies, separated by major and minor scale melodies. 
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(a) 

 
 
(b) 

 
 
Figure 4. (a) Similarity comparison between empirical ratings, 
EDM values, and MSM values in major test melodies. (b) 
Similarity comparison between empirical ratings, EDM values, 
and MSM values in minor test melodies. 
 

V. CONCLUSIONS AND FUTURE 
DIRECTIONS 

While acknowledging previous work related to musical 
similarity that compared empirical judgments with algorithms, 
our intention for this study was to extend the available 
methodology within the context of music information retrieval. 
Specifically, our focus was on formulating an empirically 
derived measure for determining similarity between two 
melodies differing by one note. Through this study we 
developed such a measure on the basis of multiple linear 
regression analyses of similarity ratings. The predictors we 
evaluated were chosen because of their importance in the 
perception of melodic structure. Our findings indicate that for 
non-transposed melodies pitch distance, pitch direction, and to 
a certain degree melodic contour were important predictors 
that affected similarity judgments. For transposed melodies 
melodic contour and tonal stability significantly affected 
similarity judgments. We believe that rhythmic salience may 
not have had a significant effect because of possible 
ambiguities in the rhythmic structure (e.g., note 4 may have 
been perceived as a pick-up note). 

The results of the regression models represent the first 
version of an empirically derived measure for determining the 
similarity between two melodies. In our next study, we intend 
to alter pitches on positions 3 (strong) and 6 (weak) instead of 

position 4 and 5.  We also intend to incorporate melodies that 
differ by more than one note. This would require deriving a 
function that takes into account additional cognitive 
parameters such as the number of altered pitches, the primacy 
and recency effects of altered pitches, and the combined effect 
of musical predictors for each altered note. 
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