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ABSTRACT 

The normalized pairwise variability index (nPVI) is a 
measure of the average variation of a set of distances 
(durations) that are obtained from successive ordered 
pairs of events. It was originally conceived for 
measuring the rhythmic differences between languages 
on the basis of vowel length. More recently, it has also 
been employed successfully to compare large-scale 
rhythm in speech and music. London & Jones (2011) 
suggested that the nPVI could become a useful general 
tool for musical rhythm analysis. One goal of this 
study is to determine how well the nPVI models 
various dimensions of musical rhythmic complexity, 
ranging from human performance and perceptual 
complexities, to mathematical measures of metric 
complexity and rhythm irregularity. A second goal is 
to determine to what extent the nPVI is capable of 
discriminating between short, symbolically notated, 
musical rhythms across meters, genres, and cultures. It 
is shown that the nPVI suffers from several 
shortcomings, when it comes to modeling metric 
complexity and rhythm complexity, in the context of 
short symbolic rhythmic patterns, such as Sub-Saharan 
African bell patterns, Arabic rhythms, Rumanian dance 
rhythms, and Indian talas. Nevertheless, comparisons 
with previous experimental results reveal that the nPVI 
correlates mildly, but significantly, with human 
performance complexity. It is also able to discriminate 
between most of the families of rhythms tested. 
However, no highly significant differences were found 
between the nPVI values of binary and ternary musical 
rhythms, partly mirroring the findings by Patel & 
Daniele (2003) for language rhythms.  

I. INTRODUCTION 
The normalized pairwise variability index (nPVI) is a 

measure of the average variation of a set of distances 
(durations) that are obtained from successive adjacent ordered 
pairs of events. It was originally conceived for measuring the 
rhythmic differences between languages on the basis of vowel 
length (Grabe & Low, 2002), and several successful 
applications in this domain have been realized (Gibbon & 
Gut, 2001). It has also been applied to the determination of 
the cognitive complexity of using text-entry systems 
(Sandness, F. E. & Jian, H.-L., 2004). A review of the history, 
rationale, and application of the nPVI to the study of 
languages is given by Nolan & Asu (2009). More recently, the 
measure has also been employed successfully to compare 
speech rhythm with rhythm in music (McGowan & Levitt, 
2011; London & Jones, 2011; Patel & Daniele, 2003; Huron 
and Ollen, 2003; Daniele & Patel, 2004). It has been 
suggested by London & Jones (2011) that the nPVI could 
become a useful tool for musical rhythm analysis as such. 

Indeed, it has already been used successfully to compare 
rhythm in musical scores and their performances (Raju, Asu 
& Ross, 2010), as well as to distinguish between 
compositional styles in 19th Century French and German art 
song (VanHandel, 2006; VanHandel & Song, 2009). 

One goal of the present study is to determine how well the 
nPVI models various dimensions of musical rhythmic 
complexity, ranging from human performance and perceptual 
complexities to mathematical measures of metric complexity 
and rhythm irregularity. A second goal is to determine to what 
extent the nPVI is capable of discriminating between short, 
symbolically notated, musical rhythms across meters, genres, 
and cultures. It is shown that the nPVI suffers from several 
shortcomings when it comes to modeling metric complexity 
and rhythm complexity, in the context of short symbolic 
rhythmic patterns such as Sub-Saharan African bell patterns, 
Arabic rhythms, Rumanian dance rhythms, and Indian talas. 
Nevertheless, comparisons with previous experimental results 
reveal that the nPVI correlates mildly, but significantly, with 
human performance complexity. The index is also able to 
discriminate between most of the families of rhythms tested. 
However, no highly significant differences were found 
between the nPVI values for binary and ternary musical 
rhythms, partly mirroring the findings by Patel & Daniele 
(2003) for language rhythms 

II. CHANGE AS A MEASURE  OF 
COMPLEXITY 

Nick Chater, (1999, p. 287) suggests that judgments of 
complexity are akin to judgments of irregularity. Since a 
rhythm consists of a pattern of inter-onset intervals, one way 
to measure the irregularity of the rhythm is by measuring the 
irregularity of the intervals that make up the rhythm. The 
standard deviation is a widely used measure of the dispersion 
of a random variable, used in statistics and probability. When 
the random variable is the size of the inter-onset intervals it 
becomes a measure of irregularity, and has thus been used 
frequently in speech and language studies. However, musical 
rhythm and speech are not static; they are processes that 
unfold in time, and the standard deviation measure "lifts" the 
intervals out of their original order, disregarding the 
relationships that exist between adjacent intervals. A better 
measure of variability across time should incorporate change. 
Measures of change have been used to characterize the 
complexity of binary sequences in the visual perceptual 
domain. Psotka, J., (1975), designed a measure called syntely 
to gage how much the structure of the early portions of a 
sequence influence the terminal sections, or "the strength of 
stimulus continuation." Indeed, Aksentijevic & Gibson (2003, 
2011), characterized psychological complexity as change: 
"Structural information is contained in the transition from one 
symbol (or element) to another and not in the symbols 
themselves." The "normalized Pairwise Variability Index" is a 
measure of variability that attempts to capture this notion of 
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change. Grabe and Low (2002) define the "normalized 
Pairwise Variability Index" (nPVI) for a rhythm with adjacent 
inter-onset intervals (IOI) as: 
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where m is the number of adjacent vocalic intervals in an 
utterance, and dk is the duration of the kth interval. Translating 
this terminology to the musical rhythmic domain converts the 
vocalic intervals to the adjacent inter-onset intervals (IOI). 
Notably, Patel (2008, p. 133) laments the use of the term 
"variability" for the nPVI because, as he rightly points out, it 
is fundamentally a measure of temporal contrast between 
adjacent durations, rather than variation, and the two measures 
are not monotonically related. Indeed, consider the two 
durational patterns A = [2-5-1-3] and B = [1-3-6-2-5]. The 
rhythm A has a lower standard deviation than B (1.708 versus 
2.074), whereas it has a higher nPVI value (106.3 versus 
88.1). In spite of anomalies such as these, the results 
presented below indicate that in many musical contexts the 
two measures are highly and significantly correlated.  

 

 
Figure 1. The standard deviation as a function of b for a+b+c=1 
and a=c 

 

Figure 2. The nPVI as a function of b for a+b+c=1 and a=c 

The two curves in Figures 1 and 2 help to clarify the 
relationship between the standard deviation and the nPVI. 
Consider a sequence of three adjacent inter-onset intervals a, 
b, c such that a + b + c = 1, and a = c. The two measures are 
plotted as a function of b, the duration of the middle interval. 

Both measures take on their minimum value (zero) when the 
three intervals are equal, and both take on their maximum 
values when b is either zero or one. Also both functions 
decrease monotonically from b = 0 to 1/3, and increase 
monotonically from b = 1/3 to 1. However, whereas the 
standard deviation varies linearly, the nPVI does not. The 
nPVI function is slightly convex from b = 0 to 1/3, and 
slightly concave from b = 1/3 to 1. The only substantial 
difference between the two curves is in the regions near their 
maximum values at the extremes of b. The nPVI takes on the 
same value (200) for b = 0 and b = 1, whereas the standard 
deviation is almost twice as large for b = 1 than for b = 0. 
Consider two IOI sequences: A = (0.15, 0.7, 0.15) and B = 
(0.45, 0.1, 0.45). The nPVI regards these two sequences as 
having almost equal variability: nPVI(A) = 130 and nPVI(B) 
= 127. However their standard deviations are quite different: 
SD(A) = 0.32 and SD(B) = 0.20.  

III. METHOD AND DATA 
Several sets of rhythms, notated as binary sequences, were 

collected, including various families of synthetic rhythms 
(random and systematic), rhythms from India, the African 
diaspora, the Arab world, and Rumania. Some had been 
previously evaluated experimentally according to measures of 
human performance and perceptual complexities. The nPVI 
values and standard deviations of the IOIs of all rhythms were 
calculated. These values yielded, for each data set, two orders 
of the rhythms. These orders were then compared with those 
produced by the remaining measures, using Spearman rank 
correlation coefficients. 

A. The Data Sets Used 
Several researchers have carried out listening experiments 

with collections of artificially generated rhythms, in order to 
test hypotheses about the mental representations of rhythms. 
The experiments done by Povel & Essens (1995), Shmulevich 
& Povel (2000), Essens (1995), and Fitch & Rosenfeld 
(2007), used three data sets of rhythms that provided measures 
of human perceptual and performance complexities for each 
rhythm. The three data sets are briefly described in the 
following. For further details and listings of all the rhythms 
(in box notation) the reader is referred to the original papers. 
All the rhythms in these three data sets consist of sixteen unit 
pulse time spans. 

1)  The Povel-Essens Data. This data comprise 35 rhythms, 
all of which contain 9 attacks. They all start with an attack on 
the first pulse, and end with a long interval [x . . .]. The 
rhythms are made up of all possible permutations of the 9 
inter-onset durations {1,1,1,1,1,2,2,3,4}, and do not resemble 
the rhythmic timelines used in traditional music. Every 
rhythm in the collection has five intervals of duration 1, two 
of duration 2, and one of duration 3 and 4, each. 

2)  The Essens Data. This data consists of 24 rhythms, in 
which the number of onsets varies between 8 and 13, and is 
generally greater than that of the Povel-Essens rhythms. All 
the rhythms also start with an attack on their first pulse. Like 
the rhythms in the Povel-Essens data, these rhythms bear little 
resemblance to the rhythms used as timelines in musical 
practice. 
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3)  The Fitch-Rosenfeld Data. This data consists of 30 
rhythms, in which the number of onsets is smaller than in the 
rhythms of the other two data sets; six rhythms have four 
onsets and the rest have five. Also noteworthy is that unlike 
the other two data sets, 17 rhythms start on a silent pulse. 
Furthermore, in contrast to the two data sets described above, 
these rhythms were generated in such a way as to vary the 
amount of syncopation present in the rhythms, as measured by 
Fitch and Rosenfeld’s implementation of the syncopation 
measure of Longuet-Higgins & Lee, (1984). These authors did 
not appear to realize that most of the rhythms generated (or 
their cyclic rotations) are in fact rhythmic patterns found in 
Sub-Saharan African and Indian music. 

4)  Random Rhythms. For part of his study of rhythm 
complexity measures, Thul, E., (2008), generated 50 random 
16-pulse rhythms listed in his Table 4.7 on p. 58. The rhythms 
were obtained by programming a random number generator to 
simulate "flipping an unbiased coin" sixteen times. Then 
"heads" was associated with an onset, and "tails" with a silent 
pulse. The 27 rhythms from this list that started with an onset 
were chosen for comparison with the other data sets in this 
study.  

5)  North Indian Talas. In Indian classical music a tala 
(also taal ot tal) is a cyclically recurring clap pattern of fixed 
length that corresponds somewhat to the concept of meter in 
Western music or compás in the flamenco music of southern 
Spain. Clayton, M., (2000), provides an in-depth analysis of 
talas and their role in North Indian classical music. The 
twelve North Indian talas used here were taken from Example 
5.1 on pages 58-59 of Clayton's book. For a comparison of 
North Indian talas and Sub-Saharan African timelines see 
Thul, E., & Toussaint, G. T., (2008). 

6)  South Indian Talas. The Carnatic music of South India 
is also based on rhythmic cycles. One of these systems 
consists of 35 sulaadi talas (Morris, R., 1998). The five eka 
talas are made up of single durations, and therefore the nPVI 
and standard deviation are not defined for them. The data used 
in this study consisted of the other 30 talas.  

7)  Decitalas. A thirteenth century Indian manuscript 
written by Sarngadeva lists 130 talas called decitalas, which 
may be found in the book by R. S. Johnson (1975), in 
Appendix II, on page 194. See also Morris, R., (1998). 
Fourteen of these are regular rhythms, which yield nPVI and 
standard deviation values of zero. Since these entries create 
ties between the two measures and inflate the Spearman rank 
correlation coefficients, they were removed, leaving 116 
irregular decitalas for the comparisons listed in Table 1. The 
decitalas have the greatest range of pulses (3 ≤ n ≤ 71) and 
onsets (2 ≤ k ≤ 19) of all the data sets used in this study. Thus 
they provide a good data set with which to study how the 
nPVI varies as a function of k and n. Not surprisingly, higher 
values of n tend to have more onsets. The Spearman rank 
correlation bears this out: r = 0.68 with p < 0.000001. The 
number of onsets relative to the number of pulses, also called 
the note density (Cerulo, K. A., 1988), may be considered to 
be a mild contributing factor of rhythm complexity. However, 
for the decitalas the nPVI and k yield a slight but statistically 
significant negative correlation: r = -0.2 with p < 0.015. It 

appears that an increase in the number of onsets tends to 
decrease the contrast between successive adjacent IOI's. On 
the other hand, the nPVI is not correlated with the number of 
pulses n (r = 0.08, p < 0.18). 

8)  Sub-Saharan African Timelines. Agawu, K., (2006), p. 
1, defines a timeline as a "bell pattern, bell rhythm, guideline, 
time keeper, topos, and phrasing referent," and characterizes it 
as a "rhythmic figure of modest duration that is played as an 
ostinato throughout a given dance composition." Most 
timelines used in Sub-Saharan African Diaspora music 
(shortened here to simply African music) employ a cycle of 
twelve (ternary) or sixteen (binary) pulses. Perhaps the most 
distinctive of these are the binary and ternary "signature" 
timelines with durational patterns [3-3-4-2-4] and [2-2-3-2-3], 
respectively. The fourteen ternary and sixteen binary timelines 
used in this study were taken from the papers by Rahn, J., 
(1987), Rahn, J., (1996), Toussaint, G. T., (2005), and the 
references therein. 

9)  Euclidean Rhythms. One of the oldest and most well 
known algorithms in the field of computer science, identified 
in Euclid’s Elements (circa 300 B.C.) as Proposition II in 
Book VII, is known today as the Euclidean algorithm. It was 
designed to compute the greatest common divisor of two 
given integers; see Franklin, P. (1956). Donald Knuth (1998) 
calls this algorithm the “granddaddy of all algorithms, 
because it is the oldest nontrivial algorithm that has survived 
to the present day.” The idea behind the Euclidean algorithm 
is remarkably simple: repeatedly replace the larger of the two 
numbers k and n by their difference, until both are equal. The 
final number thus obtained is the greatest common divisor of k 
and n. Consider the two numbers k = 5 and n = 8. Subtracting 
5 from 8 yields 3; 5 minus 3 equals 2; 3 minus 2 equals 1; and 
finally 2 minus 1 equals 1. Therefore the greatest common 
divisor of 5 and 8 is 1. In Toussaint, G. T., (2005) it was 
shown that by associating n with the number of pulses in the 
cycle, and k with the number of onsets (attacks), the Euclidean 
algorithm may be used to generate most rhythm timelines 
used in traditional music found all over the world. The key 
lies in extracting, not the answer to the original problem, but 
the structure observed in the repeated subtraction process used 
to obtain the answer. This process is illustrated in Figure 3 
with k = 5 and n = 7. The figure is self-explanatory. First the 
onsets and silent pulses are ordered one after the other as in 
(a). Then in the repeated subtraction phase, the silent pulses 
are moved to the positions as shown in (b). If there are more 
silent pulses than onsets then the number of silent pulses 
moved is the same as the number of onsets. This process is 
continued until there is only one (or zero) remaining columns, 
as in (c). The columns are then concatenated as in (d) and (e) 
to obtain the final rhythm in (f). This particular Euclidean 
rhythm denoted by E(5, 7) = [× · ×× · ××] = (21211) is the 
Nawakhat pattern, a popular Arabic rhythm (Standifer, J. 
A.,1988). In Nubia it is called the Al Noht rhythm (Hagoel, 
K., 2003). In theoretical computer science Euclidean rhythms, 
also known as Euclidean strings (Ellis, J., Ruskey, F., Sawada, 
J., & Simpson, J., 2003), have been discovered independently 
in different contexts, such as calendar leap year calculations, 
drawing digital straight lines, and word theory. In music 
theory they are called maximally even sets. Here the terms 
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maximally even and Euclidean are used interchangeably. For 
a sampling of this literature the reader is referred to Amiot, E., 
(2007), Clough, J. & J. Douthett, J., (1991), Douthett, J. & 
Krantz, K., (2007), and Toussaint, G. T., (2005). In the 
experiments described here the 46 Euclidean rhythms used 
were taken from Toussaint, G. T., (2005), and the references 
therein. Since Euclidean rhythms may be generated by such a 
simple rule, it follows that they have very low Kolmogorov 
(or information theoretic) complexity. See Chaitin, G. J., 
(1974), and Lempel, A. & Ziv, J., (1976). Furthermore, by 
their property of maximally evenly distributed onsets, the 
rhythms tend to maximize repetitiveness, and minimize 
contrast. They are therefore expected to have relatively low 
nPVI values, and thus furnish an extreme data set for 
comparison with the other data sets. This property also 
permits the robustness of the nPVI to be tested across widely 
differing data sets. 

 
Figure 3. Generating a Euclidean rhythm with k = 5 and n = 7 

10)  Rumanian Folk Dance Rhythms. Proca-Ciortea (1969), 
investigated over 1,100 Rumanian folk dances, from which 
fifty-six rhythms were extracted. The rhythms, which are 
mostly binary, consist mainly of eighth and quarter notes. Six 
of these rhythms were either regular or exhibited anacrusis, 
and were deleted, leaving fifty rhythms used in this study. 

11)  Arabian Wazn. Rhythmic patterns in Arabian music 
are known as wazn. They may be compared to Sub-Saharan 
African timelines in structure and function, although their IOI 
patterns are quite different. Whereas the African timelines use 
time spans (measures) that are composed predominantly of 
twelve and sixteen pulses, the Arabian wazn employ a wide 
variety of different values. The data used here were composed 
of nineteen wazn taken from the book by Touma, H. H. 
(1996). The longest wazn was the samah consisting of 
nineteen onsets in a time span of thirty-six pulses, with an IOI 
pattern given by [2-1-1-4-1-1-1-1-2-4-2-1-1-1-1]. Compared 
to the African timelines, the Arabian wazn are more irregular. 

12)  Optimal Golomb Rulers. A Golomb ruler is a ruler that 
has "few" marks, and which permits measuring distances only 
between pairs of these marks. Furthermore, it is desirable to 
measure as many distinct distances as possible. See Alperin, 
R. C. & Drobot, V., (2011) for a clear introduction to Golomb 
rulers. The problem arises in the need for distributing 
expensive radio telescope elements across a stretch of land so 
as to better receive signals from outer space. An optimal 
Golomb ruler with k marks is one such that no other shorter 
Golomb ruler with k marks exists. Furthermore, if the Golomb 
ruler measures all the distances ranging from one to the length 

of the ruler it is called perfect. For example the ruler with 
marks at points 0, 1, 4, and 6 is a perfect Golomb ruler. The 
length of the ruler is six, the pairwise distances realized are 
{1, 2, 3, 4, 5, 6}, and it yields the "rhythm" [x x . . x . ] with a 
durational IOI pattern [1-3-2]. The twenty shortest optimal 
Golomb rulers starting with (0, 1, 3) were obtained from 
Shearer, J. B., (2012). The motivation for using these rulers in 
the experiments is that, by the nature of their design to have 
all their pairwise distances distinct, they tend to yield 
"rhythms" that are highly irregular. (See Freeman, D. K., 
(1997) for a discussion on this topic.) Therefore Golomb 
rulers provide an another extreme data set useful for te 
comparative analysis of the nPVI. The twenty rulers used here 
had IOIs that varied in number between two and twelve. The 
ruler with the highest nPVI value of 106.3 in Figure 4 was the 
fourth in the list, with marks at (0, 2, 7, 8, 11) yielding IOIs 
[2-5-1-3]. 

 

 
Figure 4. The nPVI for the 20 shortest optimal Golomb rulers 

13)  Mathematical Measures of Complexity. In the study of 
speech rhythm, a measure of variability that has been often 
used is the classical statistical measure of the standard 
deviation of the vocalic or consonantal interval durations. See 
for example the papers by Ramus, F., Nespor, M., & Mehler, 
J. (1999), and Yoon, T.-J., (2010). Since the nPVI was 
originally proposed as a means of avoiding the drawbacks of 
the standard deviation, it was decided to compare the two 
measures to determine the extent of their differences. The 
nPVI was also compared with Keith's measure of metrical 
complexity. In the musical domain Michael Keith (1991), 
proposed a measure of meter complexity, based on a 
hierarchical partition of a meter into sub-meters, and on the 
frequency of alternations between binary and ternary units 
within different levels of this hierarchy. In Table 5.4 of 
Chapter 5 of his book, he lists seventy-six metrical patterns 
with the number of pulses as high as twenty, along with their 
complexity values. 

For a string of symbols S, Keith's measure of meter 
complexity, denoted by C(S), is defined for meters consisting 
of durational patterns made up of strings of 2's and 3's, such as 
the African signature pattern, the fume-fume [2-2-3-2-3] and 
the guajira flamenco compás [3-3-2-2-2]. Keith first partitions 
S into any string of disjoint subunits. At the lowest level these 
two rhythms are partitioned into the subunits [2][2][3][2][3] 
and [3][3][2][2][2], respectively. At this level, the complexity 
of an individual [2]-unit is 2, and that of a [3]-unit is 3. For a 
given partition the complexity of the string C(S) is the sum of 
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the complexities of the subunits. Thus at this level the 
complexities of the fume-fume and guajira are the same: 
2+2+3+2+3 = 3+3+2+2+2 = 12. Keith defines a unit as one or 
more identical contiguous subunits. Thus another possible 
pair of partitions for these two rhythms consists of [2-
2][3][2][3] and [3-3][2-2-2], respectively. The complexity 
value of a unit U consisting of a number of identical subunits 
H is defined as C(U) = max{#subunits, C(H)}, where 
#subunits denotes the number of subunits. For example, the 
complexity of the unit [2-2] is max{2, 2} = 2, and that of the 
unit [2-2-2] is max{3, 2} = 3. If we denote a partition of S by 
SU, then the complexity of a given partition of S into units, 
denoted by C(SU), is the sum of the complexities of the units, 
C(U). Therefore for this partition C(SU)(fume-fume) = 
2+3+2+2 = 9, and C(SU)(guajira) = 3+3 = 6. Finally, the 
complexity of the sequence C(S) is the minimum complexity, 
minimized over all possible partitions; C(S)  = min{C(SU)}. In 
our example the guajira admits several other partitions such as 
[3-3][2-2][2], [3-3][2][2-2], [3][3][2-2][2], and [3][3][2][2-2], 
the complexities of which are, respectively, 7, 7, 10, and 10. 
Therefore the final complexities are C(fume-fume) = 9, and 
C(guajira)  = 6. 

A scatter-plot of the nPVI values as a function of Keith's 
complexity measure, for the seventy-six metric patterns taken 
from Michael Keith's book is shown in Figure 5. Although the 
two measures are highly and significantly correlated (r = 0.65  
p < 0.01), the relationship between the two measures is 
dominated by vertical and horizontal portions. Most 
noticeable is that for a complexity value of 5, there are 
numerous rhythms with nPVI values ranging from zero to 40. 

 

 
Figure 5. nPVI as a function of Keith's metric complexity 

IV. RESULTS 
The Spearman rank correlation coefficients and statistical 

significance values obtained by comparing the various 
complexity measures with the nPVI for all the data sets are 
listed in Table 1. Those with statistically significant p-values 
are highlighted in bold. 

A comparison of the nPVI with the human performance 
and perceptual complexities obtained with the three data sets 
of Povel-Essens, Essens, and Fitch-Rosenfeld, yields curious 
mixed results. The performance and perceptual complexity 
judgments in the Povel-Essens and Essens data sets do not 
correlate at all with the nPVI values. Furthermore, in the case 

of the Povel-Essens data, the nPVI cannot even be compared 
with the standard deviation because the standard deviation of 
the IOI's is the same for all the rhythms, due to the fact that 
they consist of permutations of the intervals in the set 
{1,1,1,1,1,2,2,3,4}. Thus the Spearman rank correlation 
coefficient is not computable for this type of data. The Fitch-
Rosenfeld rhythms tell a different story however. Here the 
human performance complexity is mildly but significantly 
correlated with the nPVI (r = 0.40 with p < 0.02), as is the 
standard deviation (r = 0.57 with p < 0.01). For the Essens 
rhythms the standard deviation is also highly and significantly 
correlated with the nPVI (r = 0.67 with p < 0.01). 

Table 1.  Spearman rank correlations between the nPVI values 
of various complexity measures 

Complexity Measure nPVI 
Performance Complexity (Povel-Essens) r = -0.006  p < 0.5 
Perceptual Complexity (Povel-Essens) r = 0.100  p < 0.27 
Standard Deviation (Povel-Essens) Stan. Dev. = 0 
Performance Complexity (Essens) r = 0.047  p < 0.42 
Perceptual Complexity (Essens) r = 0.006  p < 0.49 
Standard Deviation (Essens) r = 0.67    p < 0.01 
Performance Complexity (Fitch-Rosenfeld) r = 0.40    p < 0.02 
Standard Deviation (Fitch-Rosenfeld) r = 0.57    p < 0.01 
Keith's Complexity Measure - C(S) r = 0.65    p < 0.01 
Stan. Dev. (12 North Indian Talas) r = 0.73    p < 0.01 
Stan. Dev. (30 South Indian Talas) r = 0.67    p < 0.01 
Stan. Dev. (116 Irregular Decitalas) r = 0.77    p < 0.01 
Stan. Dev. (14 African Timelines; k=5, n=12) r = 0.80    p < 0.01 
Stan. Dev. (16 African Timelines; k=5, n=16) r = 0.86    p < 0.01 
Stan. Dev. (46 Euclidean Rhythms) r = 0.55    p < 0.01 
Stan. Dev. (28 Random Rhythms; n=16) r = 0.55    p < 0.01 
Stan. Dev. (50 Rumanian Folk Rhythms) r = 0.35    p < 0.01 
Stan. Dev. (19 Arabian Wazn) r = 0.31    p < 0.1 
Stan. Dev. (20 Golomb Rulers) r = 0.31    p < 0.1 

 
Patel and Daniele (2003) compared the rhythm of English 

and French music and language using the nPVI of the lengths 
of the notes in music, and the vocalic durations in speech, 
respectively. In both cases they found that the nPVI values for 
British English were greater than for French. To test the 
influence of musical meter on the nPVI values of note 
durations, to account for the differences observed, they 
separated their musical themes into those with binary and 
ternary meters, and found that the nPVI values of the binary 
and ternary music corpora did not differ significantly. Their 
corpora consisted of 137 English musical themes from 
composers such as Elgar, Delius, and Holst, and 181 French 
musical themes from composers that included Debussy, 
Honegger, and Ravel. These results motivated the exploration 
of whether there is any significant difference between the 
nPVI values in a completely different musical context: 
African rhythm instead of classical European music, and note 
durations replaced by inter-onset intervals. For this purpose 
two groups of rhythms were compiled from a collection of 
books and journals, consisting of 34 binary sixteen-pulse 
timelines, and 39 ternary twelve-pulse timelines. The nPVI 
values are shown in Figure 6, where the error bars indicate one 
standard deviation above and below the mean. The most notable 
aspect is that the two means differ little in absolute terms 
compared to the variability within each group (t = 1.542, with p 
= 0.0636, one-sided test) mirroring somewhat the findings by 
Patel & Daniele (2003). However, the Kolmogorv-Smirnoff test 
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rejects the null hypothesis that the two distributions of nPVI 
values are the same (D = 0.3385 with p < 0.02). 

 

 
Figure 6.  The nPVI values for the binary and ternary African 
diaspora rhythm timelines 

As mentioned in the introduction, it has been shown in 
previous research that the nPVI could be used to discriminate 
among different compositional styles in 19th Century French 
and German art song (VanHandel, 2006; VanHandel & Song, 
2009). These results motivated the testing of whether the 
nPVI is able to discriminate between rhythms of different 
styles, as well as cultures. To this end several corpora of 
rhythms were compiled: Euclidean rhythms, Arabian rhythms, 
Rumanian rhythms, African timelines, and Indian talas. The 
average values of the nPVI scores for six of these corpora are 
shown in the graph in Figure 7, in increasing order, along with 
error bars indicating plus and minus one standard deviation. 
Again, the variation within each group is much greater than 
the differences between the means. Nevertheless, the general 
trend is that Euclidean rhythms appear to be the simplest, and 
North Indian talas the most complex. 

 
Figure 7.  The nPVI averages for rhythms from different genres 

To obtain some insight into the sensitivity of the variability 
of the nPVI for different genres of rhythms, the nPVI was also 
computed for two sets of random rhythms that were generated 
as described in Subsection 4). The nPVI values for the binary 
16-pulse and ternary 12-pulse rhythms are shown in Figure 8, 
alongside the value for the Euclidean rhythms. As might be 
expected, the nPVI values for the random rhythms are much 
higher than for the Euclidean (maximally even) rhythms. A 
Kolmogorov-Smirnov test of the difference between the two 
distributions yields a distance of D = 0.65 with p < 0.001, 
confirming the intuition that the maximally even rhythms are 
highly non-random. However, the variability for the 16-pulse 
random rhythms is not greater than that for any of the other 

families of rhythms tested. Indeed, from Figure 7 it may be 
observed that the North Indian rhythms and Decitalas have the 
highest variability of all. Does this mean that the Indian talas 
are more random than the rhythms of other genres? On the 
contrary, one might expect that variability is greater in 
specifically designed rhythms than in random rhythms. To test 
this conceivable hypothesis Kolmogorov-Smirnov tests were 
performed with the nPVI values of the random rhythms (12-
pulse and 16-pulse rhythms combined) and the three types 
Indian talas separately: North Indian talas, South Indian 
Sulaadi talas, and Decitalas. The results are listed in Table 2. 
For the South Indian and Decitalas we may reject the 
hypothesis that they come from the same distribution as the 
random rhythms. On the other hand, for the North Indian talas 
this is not the case, although this may be due to the small 
sample size of the North Indian talas. Comparing the nPVI 
values of the three systems of Indian talas with each other 
using Kolmogorov-Smirnov tests suggests that the Decitalas 
are significantly different from the North Indian talas (D = 
0.389 with p < 0.05), as well as the South Indian talas (D = 
0.378 with p < 0.001), but the North Indian talas are not 
significantly different from the South Indian talas (D = 0.316 
with p < 0.3). 

Table 2. Kolmogorov-Smirnov distances and significance tests 
for comparison of the nPVI values of the Indian talas with 
random rhythms 

Kolmogorov-Smirnov Tests Against Random Rhythms 

North Indian 
Talas 

South Indian Talas Decitalas 

D = 0.328 D = 0.327 D = 0.364 

p < 0.21 p < 0.03 p < 0.001 
 
 

 

Figure 8.  Comparing maximally even and random rhythms 

From Figure 7 it may be observed that the Arabian, 
Rumanian, and African rhythms have almost equal average 
nPVI values, as well as similar degrees of variation. 
Furthermore all three genres of rhythms have similar short 
IOI's with a generous supply of IOI's made up of durations of 
two and three pulses. Therefore these data sets provide strict 
tests of the power of the nPVI to discriminate between these 
genres of rhythms coming from different cultures. Table 3 
shows the Kolmogorov-Smirnov distances and significance 
tests of the nPVI values obtained across cultures for the six 
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families of rhythms of Figure 7. The results with statistically 
significant p-values (less than 0.05) are highlighted in bold. 
Of the fifteen pairwise comparisons, ten are statistically 
significant. The nPVI can easily distinguish between the 
North Indian talas and all the remaining data sets. The 
Euclidean rhythms are significantly different from all other 
rhythms except the Arabian rhythms. The African timelines 
and Indian Decitalas are distinguishable from the Arabian 
rhythms at the 0.06 level. The rhythm families hardest to 
distinguish are the Arabian from the Rumanian and African 
rhythms as well as the Rumanian rhythms from the African 
rhythms. 

Table 3. Kolmogorov-Smirnov distances and significance tests 
for comparison of the nPVI values across cultures 

Kolmogorov-Smirnov Tests Across Cultures 
 Arabian Rumanian African Decitalas North 

Indian 
Euclidean D = 0.23 

p < 0.40 
D = 0.28 
p < 0.04 

D = 0.35 
p < 0.01 

D = 0.38 
p < 0.01 

D = 0.59 
p < 0.01 

Arabian - D = 0.14 
p < 0.94 

D = 0.19 
p < 0.60 

D = 0.31 
p < 0.06 

D = 0.61 
p < 0.01 

Rumanian  - D = 0.13 
p < 0.66 

D = 0.24 
p < 0.03 

D = 0.56 
p < 0.01 

African   - D = 0.2  
p < 0.05 

D = 0.52 
p < 0.01 

Decitalas    - D = 0.39 
p < 0.05 

 

V. CONCLUSION 
The goal of the research described here was to explore the 

efficacy of the nPVI as a tool for the analysis of the complexity 
of short musical rhythms. The main results of this study follow 
two general trends that depend on the types of data used. The 
first type of data comprised mainly human judgments of 
perceptual and performance complexities obtained from 
listening tests performed with rhythms that were artificially 
generated in the laboratory. The second kind of data consisted of 
mathematical measures of complexity (nPVI, standard deviation, 
and Keith's metric complexity) that were computed on rhythms 
from traditional musical practices of several different cultures. 
On the first kind of data the nPVI measure performed poorly, 
with one exception. On the second kind it fared much better. 

The correlation results in Table 1 exhibit a pattern of nPVI 
values that depends on the type of rhythm to which the nPVI 
is applied. The correlations between the complexity measures 
and the nPVI values tend to be, either non-existent, low or 
statistically insignificant, for extreme rhythms, or for those 
artificially generated by means of combinatorial methods, 
whereas the correlations are high and statistically significant 
for rhythms that are used in practice in traditional music. The 
standard deviation of the IOI's correlates most highly for the 
Sub-Saharan African timelines: r = 0.80 with p < 0.01 for the 
ternary timelines, and r = 0.86 with p < 0.01 for the binary 
timelines. Thus it may function also as a measure of contrast. 
These results indicate that the nPVI may be a promising and 
powerful tool in certain contexts, although the precise nature 
of these contexts has yet to be determined. The results also 
indicate that the nPVI, at least for some rhythms, is not too 
different from the standard deviation of their IOI's. 

One observation that is common to all the results obtained 
here, is that the nPVI measure has a high variance. From Figures 

6, 7, and 8, it is evident that the standard deviations of the nPVI 
values for all the data are sensitive to outliers. This behavior has 
been previously noted in the research on language (Wiget, L., et 
al., 2010). To combat this sensitivity Jian, H.-L., (2004), 
proposed a modification of the original nPVI formula, that 
incorporates the median rather than the mean of the adjacent 
interval differences. It has yet to be determined whether this 
variant of the nPVI would improve the results obtained here. 

It is an obvious fact that the order of the duration intervals of 
a rhythm influences the rhythm's perceived complexity, by 
creating contrast between intervals and their adjacent intervals, 
as well as between intervals and the underlying meter. However, 
the standard deviation of the IOI's is by definition blind to this 
order.  Not surprisingly it is not difficult to create examples that 
show that the standard deviation fails to completely characterize 
the complexity of rhythm timelines. Consider the well-known 
Cuban clave son and Brazilian clave bossa-nova rhythms with 
IOI durational patterns [3-3-4-2-4] and [3-3-4-3-3], respectively 
(Toussaint, G. T., 2002). The bossa-nova is more complex (and 
syncopated) than the son, but the standard deviation of the 
former is 0.837, whereas for the latter it is only 0.447. Although 
the nPVI takes order into account and is thus contrast-sensitive, 
it is still oblivious to the underlying meter. Hence the nPVI fares 
no better, yielding a value of 40.47 for the son and 7.14 for the 
bossa-nova.  

Barry, W., Andreeva, B., & Koreman, J., (2009), expose 
additional limitations of the nPVI in its ability to capture 
perceived rhythm in the Bulgarian, English, and German 
languages. These results support the thesis of Arvaniti, A., 
(2009), who argues that metrics such as the standard deviation 
as well as the nPVI are unreliable predictors of rhythmic types 
in languages. Nolan & Asu, (2009) conclude from their study 
that in language, duration cannot be "assumed to be either the 
exclusive correlate of perceived rhythm nor to act 
independently of other cues in perception," and according to 
Royer, F. L. & Garner, W. R., (1970), "pattern organizations 
are wholistic." The present study suggests similar conclusions 
with respect to short rhythms in the musical domain. 
Nevertheless, as the results in Table 3 attest, the nPVI is 
successful at discriminating between most of the pairs of 
rhythm families tested. 

To be more generally useful for both theoretical and practical 
musical rhythm analysis, a suitable modification of the nPVI 
that takes metrical information into account, is probably 
necessary. What the exact nature of such a modification should 
entail is as yet an open question. However, investigations along 
these lines have already started. London, J. & Jones, K., (2011), 
propose several modifications of the nPVI for its specific 
application to musical rhythm. These refinements include the 
application the nPVI hierarchically to higher levels of 
rhythmic structure, analysing binary and ternary (duple and 
triple) rhythms separately, and using alternative codings of the 
IOI durations, such as rounding durations to the nearest beat. 
In addition to incorporating meter, refinements of the nPVI 
that take grouping into account provide further alternatives. 
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